冲断构造与正反转构造物理模拟实验的研究进展

李涤, 何登发, 高敏. 冲断构造与正反转构造物理模拟实验的研究进展[J]. 地质科学, 2014, 49(1): 81-94. doi: 10.3969/j.issn.0563-5020.2014.01.006
引用本文: 李涤, 何登发, 高敏. 冲断构造与正反转构造物理模拟实验的研究进展[J]. 地质科学, 2014, 49(1): 81-94. doi: 10.3969/j.issn.0563-5020.2014.01.006
Li Di, He Dengfa, Gao Min. Progress in the physical simulation experiment of thrust structures and positive inversion structures[J]. Chinese Journal of Geology, 2014, 49(1): 81-94. doi: 10.3969/j.issn.0563-5020.2014.01.006
Citation: Li Di, He Dengfa, Gao Min. Progress in the physical simulation experiment of thrust structures and positive inversion structures[J]. Chinese Journal of Geology, 2014, 49(1): 81-94. doi: 10.3969/j.issn.0563-5020.2014.01.006

冲断构造与正反转构造物理模拟实验的研究进展

详细信息
    作者简介:

    李涤,男,1984年8月生,博士研究生,构造地质学专业。E-mail:xdlidi@163.com

  • 中图分类号: P542

Progress in the physical simulation experiment of thrust structures and positive inversion structures

  • 冲断构造和正反转构造是我国西部叠合盆地中典型的构造样式,其构造物理模拟实验是研究和模拟自然界冲断构造(正反转构造)变形特征和动力学过程的一种有效的实验方法。在查阅大量相关资料的基础上,本文概述了物理模拟实验的发展历史,以及国内外在实验理论、实验技术和从二维到三维转变等方面的研究现状。目前,构造物理模拟实验已被广泛应用于构造地质学、石油构造地质学等众多研究领域,是油气勘探研究由定性描述跨入半定量—定量分析的有效途径之一。本文分别阐述了冲断构造和正反转构造在近年来取得的进展:1)在冲断构造物理模拟实验方面,介绍了双指向冲断构造和推覆体、地表作用对冲断构造的影响以及冲断构造中地层缩短量和应变等3方面的进展;2)在正反转构造物理模拟实验方面主要讲述了基底对反转构造演化型式的制约以及反转临界条件的三维构造模拟取得的进展。同时,认为物理模拟在未来的发展过程中应紧密结合数值模拟、高精度成像技术和数据采集技术等。作为研究构造变形机制的重要媒介,冲断构造物理模拟在塑性变形对冲断构造的影响、如何反映现代构造地质学成果以及模拟过程中如何加入化学物质迁移等问题方面仍存在不足。此外,高端实验室的建设和模拟技术也是构造物理模拟实验面临的一个问题。
  • 加载中
  • [1]

    胡望水, 刘学锋, 潘仁芳等. 2001. 正反转构造与油气聚集. 北京:石油工业出版社. 1—166.

    [2]

    Hu Wangshui, Liu Xuefeng, Pan Renfang et al. 2001. Positive Inverted Structures and Oil Gas Accumulation. Beijing:Petroleum Industry Press. 1—166.

    [3]

    李建国, 周永胜, 宋瑞卿等. 1997. 岩石圈塑形流动网络与多层构造变形的物理模型. 地震地质, 19 (3): 248—258.

    [4]

    Li Jianguo, Zhou Yongsheng, Song Ruiqing et al. 1997. Physical modeling of plastic-flow network and multi-layer tectonic deformation in the lithosphere. Seismology and Geology, 19 (3): 248—258.

    [5]

    刘欣颖, 胡 平. 2011. 非均质底水油藏水平井三维物理模拟实验. 石油学报, 32 (6): 1012—1016.

    [6]

    Liu Xingying and Hu Ping. 2011. A 3-D visible physical experiment on horizontal wells of heterogeneous reservoirs with bottom water. Acta Petrolei Sinica, 32 (6): 1012—1016.

    [7]

    马宝军, 漆家福, 杨 桥. 2005. 沾车凹陷新生代盆地基底构造演化的物理模拟. 西安石油大学学报(自然科学版), 20 (3): 15—18.

    [8]

    Ma Baojun, Qi Jiafu and Yang Qiao. 2005. Physical simulation of the structural evolution of the Cenozoic basin basement in Zhan-Che Sag, Journal of Xi'an Shiyou University(Natural Science Edition), 20 (3): 15—18.

    [9]

    马宝军, 漆家福, 于福生等. 2006. 施力方式对半地堑反转构造变形特征影响的物理模拟实验研究. 大地构造与成矿学, 30 (2): 174—179.

    [10]

    Ma Baojun, Qi Jiafu, Yu Fusheng et al. 2006. The impact of forcing mechanism on the deformation characteristics of the inversion structures in half-grabens, an inspiration from physical modeling. Geotectonica et Metallogenia, 30 (2): 174—179.

    [11]

    马宝军, 漆家福, 于福生等. 2008. 准噶尔盆地车—莫古隆起构造特征及物理模拟. 大地构造与成矿学, 32 (1): 36—41.

    [12]

    Ma Baojun, Qi Jiafu, Yu Fusheng et al. 2008. Physical modeling of deformation for the Che-Mo paleo-uplift, Junggar Basin. Geotectonica et Metallogenia, 32 (1): 36—41.

    [13]

    单家增, 张启明, 汪集旸. 1994. 莺歌海盆地泥底辟构造的成因机制的模拟实验(一). 中国海上油气, 8 (5): 311—317.

    [14]

    Shan Jiazeng, Zhang Qiming and Wang Jiyang. 1994. Model experiments on the mechanism of mud diaper structure in Yinggehai Basin, South China Sea(One). China Offshore Oil and Gas, 8 (5): 311—317.

    [15]

    单家增. 1996. 构造模拟实验在石油地质学中的应用. 北京:石油工业出版社. 1—176.

    [16]

    Shan Jiazeng. 1996. Application of Structural Modeling Experiment to Petroleum Geology. Beijing:Petroleum Industry Press. 1—176.

    [17]

    单家增. 2004. 对称褶皱形成的三维构造物理模拟实验. 石油勘探与开发, 31 (5): 8—10.

    [18]

    Shan Jiazeng. 2004. Three-dimensional physical experiments of symmetrical fold. Petroleum Exploration and Development, 31 (5): 8—10.

    [19]

    单家增, 李继亮, 肖文交. 1999. 陆陆碰撞造山带动力学成因机制的物理模拟实验.地学前缘, 6(4): 397—406

    [20]

    Shan Jiazeng, Li Jiliang and Xiao Wenjiao. 1999. Physical model experiments of dynamic mechanism on continent-continent collision. Earth Science Frontiers, 6(4): 397—406

    [21]

    时秀朋, 李 理, 龚道好等. 2007. 构造物理模拟实验方法的发展与应用. 地球物理学进展, 22 (6): 1728—1735.

    [22]

    Shi Xiupeng, Li Li, Gong Daohao et al. 2007. The development and application of structure physical modeling. Progress in Geophysics, 22 (6): 1728—1735.

    [23]

    王 颖, 王英民, 赵锡奎. 2004. 构造模拟实验在构造研究中的应用——以桩西潜山为例. 石油实验地质, 26 (3): 308—312.

    [24]

    Wang Ying, Wang Yingmin and Zhao Xikui. 2004. Application of simulation experiment to the study of structural evolution—An example of the Zhuangxi Buried Hill. Petroleum Geology & Experiment, 26 (3): 308—312.

    [25]

    王宗秀. 1995. 俯冲带楔体中逆冲构造的形成及演化—构造物理模拟实验研究. 地球学报, 16 (2): 165—176.

    [26]

    Wang Zongxiu. 1995. Formation and evolution of thrust in the wedge of subduction zone:Experiment research on tectonophysics modeling. Acta Geoscientia Sinica, 16 (2): 165—176.

    [27]

    魏春光, 周建勋, 何雨丹. 2004. 岩石强度对冲断层形成特征影响的砂箱实验研究. 地学前缘, 11 (4): 559—565.

    [28]

    Wei Chunguang, Zhou Jianxun and He Yudan. 2004. Experimental study with sandbox of the influence of rock's intensity on formation of thrusts. Earth Science Frontiers, 11 (4): 559—565.

    [29]

    解国爱, 贾 东, 吴晓俊等. 2007. 构造模拟实验中的光线应变测量. 地质通报, 26 (5): 520—525.

    [30]

    Xie Guoai, Jia Dong, Wu Xiaojun et al. 2007. Measurements of optical fiber strain in structural analogue modeling experiments. Geological Bulletin of China, 26 (5): 520—525.

    [31]

    曾佐勋, 刘立林. 1993. 双核型旋扭构造实验研究. 中国地质科学院地质力学研究所所刊, 15: 111—119.

    [32]

    Zeng Zuoxun and Liu Lilin. 1993. Experimental research on binucleus-type vortex structure, Bulletin of the Institute of Geomechanics CAGS, 15:111—119.

    [33]

    张玉兰, 王伟锋, 马宗晋. 2003. 准噶尔盆地南缘构造物理模拟实验. 石油大学学报(自然科学版), 27 (3): 1—5.

    [34]

    Zhang Yulan, Wang Weifeng and Ma Zongjin. 2003. Physical simulation experiment on geological structures in the south of Junggar Basin. Journal of China University of Petroleum(Edition of Natural Science), 27 (3): 1—5.

    [35]

    郑贵洲, 申永利. 2004. 地质特征三维分析及三维地质模拟现状研究. 地球科学进展, 19 (2): 218—223.

    [36]

    Zheng Guizhou and Shen Yongli.2004.3D analysis of geological characteristics and status research of 3D geology modeling. Advance in Earth Sciences, 19 (2): 218—223.

    [37]

    周祖翼. 1994. 反转构造. 地质科技情报, 13 (1): 3—11.

    [38]

    Zhou Zuyi. 1994. Inversion tectonics. Geological Science and Technology Information, 13 (1): 3—11.

    [39]

    周建勋, 徐凤银, 曹爱锋等. 2006. 柴达木盆地北缘反S形褶皱冲断带变形机制的物理模拟研究. 地质科学, 41 (2): 202—207.

    [40]

    Zhou Jianxun, Xu Fengyin, Cao Aifeng et al. 2006. A physical modeling on mechanism of reverse S-shaped fold-and-thrust belts in the northern Qaidam Basin. Chinese Journal of Geology, 41 (2): 202—207.

    [41]

    朱战军, 周建勋, 林壬子. 2002. 挤压构造的砂箱物理模拟实验研究现状. 断块油气田, 9 (2): 11—13.

    [42]

    Zhu Zhanjun, Zhou Jianxun and Lin Renzi. 2002. Experimental study on sand-box analog models of compressional structure. Fault-Block Oil & Gas Field, 9 (2): 11—13.

    [43]

    Bally A W. 1984. Tectogenese et seismique reflexion. Bulletin de la Société Géologique de France, 7 (2): 279—285.

    [44]

    Bellahsen N and Daniel J M. 2005. Fault reactivation control on normal fault growth:An experimental study. Journal of Structural Geology, 27 (4): 769—780.

    [45]

    Brun J P and Nalpas T. 1996. Graben inversion in nature and experiments. Tectonics, 15 (3): 677—687.

    [46]

    Buchanan J G and Buchanan P G. 1995. Basin inversion. Geological Society, London, Special Publications, 88: 1—596.

    [47]

    Buchanan P G and McClay K R. 1991. Sand box experiments of inverted listric and planar fault systems. Tectonophysics, 188 (1—2): 97—115.

    [48]

    Buchanan P G and McClay K R. 1992. Experiments on basin inversion above reactivated domino faults. Marine and Petroleum Geology, 9 (5): 486—500.

    [49]

    Cadell H M. 1889. Experimental researches in mountain building. Transactions of Royal Society of Edinburgh, 35 (1): 337—357.

    [50]

    Chemenda A Ⅰ, Mattauer M, Malavieille J et al. 1995. A menchanism for syn-collisional rock exhumation and associated normal faulting:Results from physical modeling. Earth and Planetary Science Letters, 132 (1—4): 225—232.

    [51]

    Colletta B, Letouzey J, Pinedo R et al. 1991. Computerized X-ray tomography analysis of sandbox models:Examples of thin-skinned thrust systems. Geology, 19 (11): 1063—1067.

    [52]

    Cooper M A. 1983. The calculation of bulk strain in oblique and inclined balanced sections. Journal of Structural Geology, 5 (2): 161—165.

    [53]

    Cooper M A and Williams G D. 1989. Inversion tectonics. Geological Society, London, Special Publications, 44: 1—376.

    [54]

    Corti G, Bonini M, Mazzarini F et al. 2002. Magma-induced strain localization in centrifuge models of transfer zones. Tectonophysics, 348 (4): 205—218.

    [55]

    Cruz L, Teyssier C, Perg L et al. 2008. Deformation, exhumation, and topography of experimental doubly-vergent orogenic wedges subjected to asymmetric erosion. Journal of Structural Geology, 30 (1): 98—115.

    [56]

    Dixon J M and Liu S M. 1992. Centifuge modeling of the propagation of thrust faults. In:McClay K R(Ed.). Thrust Tectonics. Springer. 33—69.

    [57]

    Eisenstadt G and Withjack M O. 1995. Estimating inversion:Results from clay models. Geological Society, London, Special Publications, 88: 119—136.

    [58]

    Grujic D and Mancktelow N. 1995. Folds with axes parallel to the extension direction:An experimental study. Journal of Structural Geology, 17 (2): 279—285.

    [59]

    Harding T P. 1985. Seismic characteristics and identification of negative flower structures, positive flower structures and positive structural inversion. AAPG Bulletin, 69 (4): 582—600.

    [60]

    Hubbert M K. 1937. Theory of scale models as applied to the study of geologic structures. Geological Society of American Bulletin, 48 (10): 1459—1520.

    [61]

    Hubbert M K. 1951. Mechanical basis for certain familiar geologic structures. Geological Society of American Bulletin, 62 (4): 355—372.

    [62]

    Koopman A, Specksnijder A and Horsfield W T. 1987. Sand model studies of inversion tectonics. Tectonophysics, 137 (1—4): 379—388.

    [63]

    Koyi H, Tenyon M K and Peterson K. 1993. The effect of basement faulting on diapirism. Journal of Petroleum Geology, 16 (3): 285—312.

    [64]

    Koyi H A, Sans M, Teixell A et al. 2003. The significance of penetrative strain in the restoration of shortened layers——Insights from sand models and the Spanish Pyrenees. AAPG Memoir, 82: 1—16.

    [65]

    Liu H Q, McClay K R and Powell D. 1992. Physical models of thrust wedges. In:McClay K R(Ed.). Thrust Tectonics. Springer. 71—81.

    [66]

    Lowell J D. 1985. Structural styles in petroleum exploration. Pennwell Corp. 1—504.

    [67]

    Marques F O and Cobbold P R. 2002. Topography as a major factor in the development of arcuate thrust belts:Insights from sandbox experiments. Tectonophysics, 348 (4): 247—268.

    [68]

    Marques F O and Nogueira C R. 2008. Normal fault inversion by orthogonal compression:Sandbox experiments with weak faults. Journal of Structural Geology, 30 (6): 761—766.

    [69]

    Marshak S, Wilkerson M S and Hsui A T. 1992. Generation of curved fold-thrust belts:Insight from simple physical and analytical models. In:McClay K R(Ed.). Thrust Tectonics. Springer. 83—92.

    [70]

    McClay K R. 1989. Analogue models of inversion tectonics. Geological Society, London, Special Publications, 44: 41—59.

    [71]

    McClay K R and Buchanan P G. 1992. Thrust faults in inverted extensional basins. In:McClay K R(Ed.). Thrust Tectonics. Springer. 93—104.

    [72]

    McClay K R. 1995. The geometries and kinematics of inverted fault systems:A review of analogue model studies. Geological Society, London, Special Publications, 88: 97—118.

    [73]

    McClay K R and Bonora M. 2001. Analog models of restraining stopovers in strike-slip fault systems. AAPG Bulletin, 85 (2): 233—260.

    [74]

    McClay K R and Whitehouse P S. 2004. Analog modeling of doubly vergent thrust wedges. AAPG Memoir, 82: 184—206.

    [75]

    Mitra S. 1993. Geometry and Kinematic evolution of inversion structures. AAPG Bulletin, 77 (7): 1159—1191.

    [76]

    Mulugeta G and Koyi H. 1987. Three-dimensional geometry and kinematics of experimental piggyback thrusting. Geology, 15 (11): 1052—1056.

    [77]

    Mulugeta G.1988a. Squeeze box in a centrifuge. Tectonophysics, 148 (3—4): 323—335.

    [78]

    Mulugeta G.1988b. Modelling the geometry of Coulomb thrust wedges. Journal of Structural Geology, 10 (8): 847—859

    [79]

    Shemenda A Ⅰ.1994.Subduction Insights from Physical Modeling. Springer. 1—215.

    [80]

    Sibson R H. 1985. A note on fault reactivation. Journal of Structural Geology, 7 (6): 751—754.

    [81]

    Spratt D A, Dixon J M and Beattie E T. 2004. Changes in structural style controlled by lithofacies contrast across transverse carbonate bank margins:Canadian Rocky Mountains and scaled physical models. AAPG Memoir, 82: 259—275.

    [82]

    Ventisette C D, Montanari D, Sani F et al. 2006. Basin inversion and fault reactivation in laboratory experiments. Journal of Structural Geology, 28 (11): 2067—2083.

    [83]

    Williams G D, Powell C M and Cooper M A. 1989. Geometry and kinematics of inversion tectonics. Geological Society, London, Special Publications, 44: 3—15.

    [84]

    Willis B. 1894. The Menchanics of Appalachaian Structure. US Geological Survey 13th Annual Report. 1—71.

    [85]

    Yamada Y and McClay K R.2004.3-D Analog modeling of inversion thrust structures. AAPG Memoir, 82: 276—301.

  • 加载中
计量
  • 文章访问数:  3471
  • PDF下载数:  932
  • 施引文献:  0
出版历程
收稿日期:  2013-01-28
修回日期:  2013-10-10
刊出日期:  2014-01-25

目录