• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶作用及其碳汇强度计算的“入渗-平衡化学法”——兼论水化学径流法和溶蚀试片法

刘再华

刘再华. 岩溶作用及其碳汇强度计算的“入渗-平衡化学法”——兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005
引用本文: 刘再华. 岩溶作用及其碳汇强度计算的“入渗-平衡化学法”——兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005
Liu Zai-hua. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test[J]. CARSOLOGICA SINICA, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005
Citation: Liu Zai-hua. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test[J]. CARSOLOGICA SINICA, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005

岩溶作用及其碳汇强度计算的“入渗-平衡化学法”——兼论水化学径流法和溶蚀试片法

doi: 10.3969/j.issn.1001-4810.2011.04.005
基金项目: 中国科学院百人计划项目、国家自然科学基金项目(编号40872168、41172232)

“Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test

  • 摘要: 岩溶作用通过碳酸盐岩溶解时消耗大气或土壤CO2成为重要的碳汇过程。本文首先简要介绍了定量评价岩溶作用及其碳汇强度的水化学径流法和碳酸盐岩溶蚀试片法及其优缺点,即水化学径流法仅适用于边界清楚且为全排型的流域,而试片法仅适用于土壤中不含碳酸盐矿物的条件。继而推导出了岩溶作用及其碳汇强度计算的“入渗-平衡化学法”(或称“潜在最大溶蚀法”),该方法的优点在于只要知道了相关地区的基本气候资料,如温度、降水和蒸发蒸腾数据,即可计算出该地区的岩溶作用及其碳汇强度。

     

  • [1] Yuan D. The carbon cycle in karst[J]. Zeitschrift fur Geonorphologie Neue Folge, 1997, 108 (Suppl-Bd): 91-102
    [2] Jiang Z, Yuan D. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999. 22: 33-35.
    [3] Liu Zaihua, Zhao Jinbo. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9):1053-1058
    [4] Gombert P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33: 177–184
    [5] Corbel J. Erosion en terrain calcaire (vitesse d’érosion et morphologie)[J]. Annales de Géographie, 1959, 68, 97–120.
    [6] Williams P W. An initial estimate of the speed of limestone solution in County Clare. Irish Geography[J], 1963, 4: 432– 441.
    [7] Gabrovsek F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas[J]. Geomorphology, 2009, 106: 9–14
    [8] Trudill S T. Measurement of erosional weight-loss of rock tablets[J]. Tech. Bull.-Br. Geomorphol. Res. Group, 1975, 17 : 13–19.
    [9] Gams I. Comparative research of limestone solution by means of standard tablets[J]. 8th Int. Congress of Speleology. National Speleological Society, Huntsville, 1981, pp. 273– 275.
    [10] Gerome-Kupper M. L’erosion des calcaires a l’air fibre: mesure de processus actuels. Z. Geomorph. N.F., 1984, Suppl.-Bd. 49: 59-74.
    [11] Gams I. International comparative measurements of surface solution by means of standard limestone tablets. Razprave iv. Razreda Sazu, Zbornik Ivana Rakovca/Ivan Rakovec Volume, XXVI, 1 sl., Ljubljana, 361-386, 1985.
    [12] 刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源[J].中国科学(D辑),2000,30:209-214.
    [13] Du J G, Cheng W Z, Zhang Y L, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 2006, 26: 533-539
    [14] Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2907-2935
    [15] Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265: 616-629
    [16] Hurwitz S, Evans W C, Lowenstern J B. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA[J] . Chemical Geology, 2010, 276: 331-343
    [17] Gaillardet J, Galy A. Himalaya - Carbon Sink or Source?[J]. Science, 2008, 320: 1727-1728
    [18] Amiotte-Suchet P, Probst A, Probst J L. Influence of acid rain on CO2 consumption by rock weathering: Local and global scales[J]. Water Air and Soil Pollution, 1995, 85: 1563-1568
    [19] Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, delta C-13(DIC), and delta S-34(SO4) in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005, 69: 5441-5458
    [20] Lerman A, Wu L. CO2 and sulfuric acid controls of weathering and river water composition[J]. Journal of Geochemical Exploration, 2006, 88: 427-430
    [21] Lerman A, Wu L L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106: 326-350
    [22] Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by delta C-13(DIC): Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270: 189-199
    [23] Meyer H, Strauss H, Hetzel R. The role of supergene sulphuric acid during weathering in small river catchments in low mountain ranges of Central Europe: Implications for calculating the atmospheric CO2 budget[J]. Chemical Geology, 2009, 268: 41-51
    [24] Semhi K, Amiotte-Suchet P, Clauer N, et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000, 15: 865-878
    [25] Perrin A, Probst A, Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72: 3105-3123
    [26] Plan, L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps[J]. Geomorphology, 2005, 68: 201-212
    [27] White B W. Rate processes: chemical kinetics and karst landform development. In: Lafleur, R.E. (Ed.), Groundwater as a Geomorphic Agent[J]. Binghampton Symp. in Geomorphology, 1984, vol. 13. Allen & Unwin, Boston, pp. 227-247.
    [28] Brook GA. A world model of soil carbon dioxide. Earth Surf[J]. Processes, 1983, 8: 79-88.
    [29] Dreybrodt W. Processes in karst systems[M]. Springer, Heidelberg, 1988
    [30] Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2?H++HCO3-[J]. Geochimica et Cosmochimica Acta, 1997, 61: 2879-2889
    [31] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99: 162-172.
  • 加载中
计量
  • 文章访问数:  2242
  • HTML浏览量:  400
  • PDF下载量:  1676
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-08
  • 发布日期:  2011-12-25

目录

    /

    返回文章
    返回