吉林辉南“反应”成因方辉橄榄岩包体及其深部动力学意义

徐义刚 MFTHIRLWALL 等. 吉林辉南“反应”成因方辉橄榄岩包体及其深部动力学意义[J]. 岩石学报, 2003, 19(1): 19-26.
引用本文: 徐义刚 MFTHIRLWALL 等. 吉林辉南“反应”成因方辉橄榄岩包体及其深部动力学意义[J]. 岩石学报, 2003, 19(1): 19-26.
XU YiGang,HUANG XiaoLong,M F THIRLWALL and CHEN XiaoMing 1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China2. Department of Geology,Royal Holloway University of London,Egham Surrey,TW20 OEX,UK3. Department of Earth Sciences,Nanjing University,Nanjing 210093,China. 'Reactive' harzburgite xenoliths from Huinan, Jilin province and their implications for deep dynamic processes[J]. Acta Petrologica Sinica, 2003, 19(1): 19-26.
Citation: XU YiGang,HUANG XiaoLong,M F THIRLWALL and CHEN XiaoMing 1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China2. Department of Geology,Royal Holloway University of London,Egham Surrey,TW20 OEX,UK3. Department of Earth Sciences,Nanjing University,Nanjing 210093,China. "Reactive" harzburgite xenoliths from Huinan, Jilin province and their implications for deep dynamic processes[J]. Acta Petrologica Sinica, 2003, 19(1): 19-26.

吉林辉南“反应”成因方辉橄榄岩包体及其深部动力学意义

  • 基金项目:

    国家自然科学基金(编号:49925308,49703042)项目,国家科技部攀登项目(95预选-39)资助成果

  • 同正常的残余方辉橄榄岩相比,辉南方辉橄榄岩具有异常高的HREE组成和特殊的二次重结晶结构,因此,它们不是上地幔经大程度部分熔融后的残余,而是熔体-岩石反应的结果。倒U型REE分配模式暗示这些样品经历了与玄武质熔体相互作用的历史,并达到了平衡,大量熔(流)体的存在有利于地幔岩石矿物颗粒的增长,从而形成特征的二次重结晶结构。这种“反应”型方辉橄榄岩的形成可能与上涌软流图对岩石圈地幔的热-化学浸蚀有关。“反应型”方辉橄榄岩形成之后,又受到了类似于碳酸岩或富挥发份小体积熔体的交代,因此辉南地区上地幔经历了多期地幔交代作用。
  • 加载中
  • [1]

    [1]Bedini RM, Bodinier JL, Dautria JM and Morten L. 1997. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the Easten African Rift. Earth Planet. Sci. Lett., 153: 67-83

    [2]

    [2]Brey GP, Kohler T. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol., 31: 1353-1378

    [3]

    [3]Downes H, Embey-Isztin A, Thirlwall M F. 1992. Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib. Mineral. Petrol., 109: 340-354

    [4]

    [4]E ML and Zhao DS. 1987. Cenozoic basalts and their deep-seated xenoliths, eastern China. Beijing. Scientific Press (in Chinese)

    [5]

    [5]Edwards SJ and Malpas J. 1996. Melt-peridotite interactions in shallow mantle at the East Pacific Rise: evidence from ODP site 895 (Hess Deep). Mineral. Magazine, 60: 191-206

    [6]

    [6]Fan QC, Sui J, Liu R, Wei H, Li N. 2000. Petrology and geochemistry of Jinlongdingzi active volcano - the most recent basaltic explosive volcano at Longgang. Chinese J. Geochem., 19: 312-317

    [7]

    [7]Frey FA, Green DH. 1974. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta, 38: 1023-1059

    [8]

    [8]Granet M, Wilson M, Achauer U. 1995. Imaging a mantle beneath the French Massif Central. Earth Planet. Sci. Lett., 136: 281-296

    [9]

    [9]Hart SR, Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol., 113: 1-8

    [10]

    [10]Ionov DA. 1998. Trace element composition of mantle-derived carbonates and coexisting phases in peridotite xenoliths from alkali basalts. J. Petrol., 39: 1931-1942

    [11]

    [11]Johnson KTM, Dick HJB, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophy. Res., 95: 2661-2678

    [12]

    [12]Kelemen PB, Hart SR, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett., 164: 387-406

    [13]

    [13]Kelemen PD, Dick HJB, Quick JE. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358: 635-641

    [14]

    [14]Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237-239

    [15]

    [15]Liu CQ, Masuda A, Xie GH. 1994. Major- and trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem. Geol., 114, 19-42

    [16]

    [16]McDonough WF, Frey FA. 1989. Rare earth elements in upper mantle rocks. In: Lipin B, McKay G (eds.) Geochemistry and mineralogy of rare earth elements. Rev. Mineral., 21: 99-145

    [17]

    [17]Mercier J-CC, Nicolas A. 1975. Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J. Petrology, 16: 454-487

    [18]

    [18]Navon O, Stolper E. 1987. Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. J. Geol., 95: 285-307

    [19]

    [19]Nicolas A, Lucazeau F, Bayer R. 1987. Peridotite xenoliths in Massif Central basalts: textural and geophysical evidence for asthenospheric diapirism. In: Nixon PH (ed.) Mantle xenoliths. John Wiley & Sons Ltd., 563-574

    [20]

    [20]Norman MD. 1998. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib. Mineral. Petrol., 130: 240-255

    [21]

    [21]Pearce JA, Barker PE, Edwards SJ, Parkinson IJ, Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwick arc-basin system, south Atlantic. Contrib. Mineral. Petrol., 139: 36-53

    [22]

    [22]Shi L, Francis D, Ludden J, Frederiksen A, Bostock M. 1998. Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera. Contrib. Mineral. Petrol., 131: 39-53

    [23]

    [23]Sun S-S, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J. (eds.) Magmatism in the ocean basins. Geological Society Special Publication 42: 313-345

    [24]

    [24]Thirlwall MF. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem. Geol. (Isotope Geoscience Section) 94: 85-104

    [25]

    [25]Van der Wal D, Bodinier J-L. 1996. Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melts flow. Contrib. Mineral. Petrol. 122: 387-405

    [26]

    [26]Walter MJ. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol., 39: 29-60

    [27]

    [27]Watson EB, Brenan JM, Baker DB. 1990. Distribution of fluids in the continental mantle. In: Menzies MA (ed.). Continental mantle. New York, Oxford Science Publication, 111-125

    [28]

    [28]Xu YG. 1999. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning. Bulletin of Mineraloy, Petrology and Geochemistry, 18: 1-5 (in Chinese with English abstract)

    [29]

    [29]Xu YG. 2000. Distribution of trace elements in spinel and garnet peridotites. Science in China (Series D), 43: 166-175

    [30]

    [30]Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath eastern China: evidence, timing and mechanism. Physics and Chemistry of the Earth (A), 26: 747-757

    [31]

    [31]Xu YG, Menzies MA, Bodinier JL, Bedini RM, Vroon P, Mercier J. 1998a. Melt percolation-reaction atop the plume: evidence from poikiloblastic spinel harzburgite xenoliths from Boree (Massif Central, France). Contrib. Mineral. Petrol., 132: 65-84

    [32]

    [32]Xu YG, Menzies MA, Vroon P, Mercier JC, Lin C. 1998b. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J. Petrol., 39: 469-493

    [33]

    [33]鄂莫岚, 赵大升. 1987. 中国东部新生代玄武岩及深源岩石包体,北京: 科学出版社

    [34]

    [34]徐义刚. 1999. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄. 矿物岩石地球化学通讯,18: 1-5

    [35]

    [35]徐义刚. 2000. 微量元素在尖晶石相和石榴石相橄榄岩中的分布. 中国科学(D辑),30: 307-314

  • 加载中
计量
  • 文章访问数:  5860
  • PDF下载数:  7210
  • 施引文献:  0
出版历程
修回日期:  2001-12-10
刊出日期:  2003-02-28

目录