Advanced Search
Article Contents

Three-year Variations of Water, Energy and CO$_2$ Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China


doi: 10.1007/s00376-008-1009-1

  • Based on 3 years (2003--05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44 25'N, 122 52'E, 184 m a.s.l.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003--05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003--05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.
  • [1] ZHUO Jinqing, HUANG Jianping, WANG Jiemin, ZHANG Wu, BI Jianrong, WANG Guoyin, LI Weijing, FU Peijian, 2009: Surface Turbulent Flux Measurements over the Loess Plateau for a Semi-Arid Climate Change Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 679-691.  doi: 10.1007/s00376-009-8188-2
    [2] Zhilin ZHU, Xinzhai TANG, Fenghua ZHAO, 2020: Comparison of Ozone Fluxes over a Maize Field Measured with Gradient Methods and the Eddy Covariance Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 586-596.  doi: 10.1007/s00376-020-9217-4
    [3] MAO Jiafu, WANG Bin, DAI Yongjiu, P. J. HANSON, M. R. LOMAS, 2007: Improvements of a Dynamic Global Vegetation Model and Simulations of Carbon and Water at an Upland-Oak Forest, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 311-322.  doi: 10.1007/s00376-007-0311-7
    [4] Lang ZHANG, Yaoming MA, Weiqiang MA, Binbin WANG, 2018: Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1137-1144.  doi: 10.1007/s00376-018-7195-6
    [5] Yamei SHAO, Huizhi LIU, Qun DU, Yang LIU, Jihua SUN, Yaohui LI, Jinlian LI, 2024: Impact of Sky Conditions on Net Ecosystem Productivity over a “Floating Blanket” Wetland in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 355-368.  doi: 10.1007/s00376-023-3013-x
    [6] Danrui Sheng, Xianhong Meng, Shaoying Wang, Pengfei Xu, Xiaohu Wen, Zhaoguo Li, Lunyu Shang, Hao Chen, Lin Zhao, Mingshan Deng, Hanlin Niu, 2024: Spatio-temporal variability and environmental controls of temperature sensitivity of ecosystem respiration across the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3167-1
    [7] GAO Zhiqiu, BIAN Lingen, CHEN Zhigang, Michael SPARROW, ZHANG Jiahua, 2006: Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 365-374.  doi: 10.1007/s00376-006-0365-y
    [8] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [9] SONG Yaoming, GUO Weidong, ZHANG Yaocun, 2009: Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 319-326.  doi: 10.1007/s00376-009-0319-2
    [10] LIU Li, WANG Tijian, SUN Zhenhai, WANG Qingeng, ZHUANG Bingliang, HAN Yong, LI Shu, 2012: Eddy Covariance Tilt Corrections over a Coastal Mountain Area in South-east China: Significance for Near-Surface Turbulence Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1264-1278.  doi: 10.1007/s00376-012-1052-9
    [11] LIU Huizhi, WANG Baomin, FU Congbin, 2008: Relationships Between Surface Albedo, Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu, Northeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 757-764.  doi: 10.1007/s00376-008-0757-2
    [12] Shenming FU, Jie CAO, Xingwen JIANG, Jianhua SUN, 2017: On the Variation of Divergent Flow: An Eddy-flux Form Equation Based on the Quasi-geostrophic Balance and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 599-612.  doi: 10.1007/s00376-016-6212-x
    [13] Jianping HUANG, Jieru MA, Xiaodan GUAN, Yue LI, Yongli HE, 2019: Progress in Semi-arid Climate Change Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 922-937.  doi: 10.1007/s00376-018-8200-9
    [14] Fu Baopu, 1987: VARIATION IN WIND VELOCITY OVER WATER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 93-104.  doi: 10.1007/BF02656665
    [15] MA Yaoming, WANG Jiemin, HUANG Ronghui, WEI Guoan, Massimo MENENTI, SU Zhongbo, HU Zeyong, GAO Feng, WEN Jun, 2003: Remote Sensing Parameterization of Land Surface Heat Fluxes over Arid and Semi-arid Areas, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 530-539.  doi: 10.1007/BF02915496
    [16] Xiaoli ZHOU, Wen ZHOU, Dongxiao WANG, Qiang XIE, Lei YANG, Qihua PENG, 2024: Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 881-893.  doi: 10.1007/s00376-023-3093-7
    [17] Zou Jinshang, Liu Huilan, 1986: DISTRIBUTION OF WATER VAPOR CONTENT (WVC) AND ITS SEASONAL VARIATION OVER THE MAINLAND OF CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 385-395.  doi: 10.1007/BF02678659
    [18] WANG Hesong, JIA Gensuo, 2012: Satellite-Based Monitoring of Decadal Soil Salinization and Climate Effects in a Semi-arid Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1089-1099.  doi: 10.1007/s00376-012-1150-8
    [19] Xiaoli LIU, Kerui MIN, Jianren SANG, Simin MA, 2023: Classification of Hailstone Trajectories in a Hail Cloud over a Semi-Arid Region in China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1877-1894.  doi: 10.1007/s00376-023-2156-0
    [20] ZHANG Renjian, FU Congbin, HAN Zhiwei, ZHU Chongshu, 2008: Characteristics of Elemental Composition of PM2.5 in the Spring Period at Tongyu in the Semi-arid Region of Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 922-931.  doi: 10.1007/s00376-008-0922-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2008
Manuscript revised: 10 November 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Three-year Variations of Water, Energy and CO$_2$ Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on 3 years (2003--05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44 25'N, 122 52'E, 184 m a.s.l.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003--05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003--05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return