Advanced Search
Article Contents

Impact of the Thermal State of the Tropical Western Pacific on Onset Date and Process of the South China Sea Summer Monsoon


doi: 10.1007/s00376-007-0100-3

  • Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.
  • [1] Huang Ronghui, 1994: Interactions between the 30-60 Day Oscillation, the Walker Circulation and the Convective Activities in the Tropical Western Pacific and Their Relations to the Interannual Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 367-384.  doi: 10.1007/BF02658156
    [2] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [3] QIAO Yunting, ZHANG Chunhua, JIAN Maoqiu, 2015: Role of the 10-20-Day Oscillation in Sustained Rainstorms over Hainan, China in October 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 363-374.  doi: 10.1007/s00376-014-3200-x
    [4] LIU Yu, LI Weiliang, ZHOU Xiuji, I.S.A.ISAKSEN, J.K.SUNDET, HE Jinhai, 2003: The Possible Influences of the Increasing Anthropogenic Emissions in India on Tropospheric Ozone and OH, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 968-977.  doi: 10.1007/BF02915520
    [5] Jiapeng MIAO, Tao WANG, Huijun WANG, Jianqi SUN, 2018: Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 645-658.  doi: 10.1007/s00376-017-7134-y
    [6] Yanying CHEN, Ning JIANG, Yang AI, Kang XU, Longjiang MAO, 2023: Influences of MJO-induced Tropical Cyclones on the Circulation-Convection Inconsistency for the 2021 South China Sea Summer Monsoon Onset, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 262-272.  doi: 10.1007/s00376-022-2103-5
    [7] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [8] Li Chongyin, Li Guilong, 1997: Evolution of Intraseasonal Oscillation over the Tropical Western Pacific / South China Sea and Its Effect to the Summer Precipitation in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 246-254.  doi: 10.1007/s00376-997-0023-z
    [9] Lu Riyu, Chan-Su Ryu, Buwen Dong, 2002: Associations between the Western North Pacific Monsoon and the South China Sea Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 12-24.  doi: 10.1007/s00376-002-0030-z
    [10] Zhang Zhenyue, 1988: TROPICAL GRAVITY-ATMOSPHERIC LONG WAVE AND THE WALKER CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 265-276.  doi: 10.1007/BF02656751
    [11] Buwen DONG, LU Riyu, 2013: Interdecadal Enhancement of the Walker Circulation over the Tropical Pacific in the Late 1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 247-262.  doi: 10.1007/s00376-012-2069-9
    [12] Li Chongyin, Long Zhenxia, Zhang Qingyun, 2001: Strong/Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1146-1160.  doi: 10.1007/s00376-001-0029-x
    [13] WANG Xin, ZHOU Wen, LI Chongyin, WANG Dongxiao, 2012: Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 249-262.  doi: 10.1007/s00376-011-1080-x
    [14] WU Bingyi, WANG Dongxiao, HUANG Ronghui, 2003: Relationship between Sea Level Pressures of the Winter Tropical Western Pacific and the Subsequent Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 496-510.  doi: 10.1007/BF02915494
    [15] Chen Lieting, 1985: THE SOUTHERN OSCILLATION AND ITS ASSOCIATEDSUMMER RAINFALLS IN CHINA-CONCURRENTDISCUSSION OF THE RELATIONSHIP BETWEEN THE SOURTHERN OSCILLATION AND WALKER CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 542-548.  doi: 10.1007/BF02678752
    [16] Yuan Zhuojian, Jian Maoqiu, 2001: Diagnostic Equations for the Walker Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 166-178.  doi: 10.1007/s00376-001-0011-7
    [17] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5
    [18] Kui LIU, Lian-Tong ZHOU, Zhibiao WANG, Yong LIU, 2023: Interdecadal Enhancement in the Relationship between the Western North Pacific Summer Monsoon and Sea Surface Temperature in the Tropical Central-Western Pacific after the Early 1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1766-1782.  doi: 10.1007/s00376-023-2200-0
    [19] Yao HA, Zhong ZHONG, Haikun ZHAO, Yimin ZHU, Yao YAO, Yijia HU, 2022: A Climatological Perspective on Extratropical Synoptic-Scale Transient Eddy Activity Response to Western Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 333-343.  doi: 10.1007/s00376-021-0375-9
    [20] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2006
Manuscript revised: 10 November 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impact of the Thermal State of the Tropical Western Pacific on Onset Date and Process of the South China Sea Summer Monsoon

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080,Guangzhou Institute of Tropical and Oceanic Meteorology, Guangzhou 510080

Abstract: Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return