留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种多波束反向散射强度数据归一化方法的建立与分析

杨彬 何林帮

杨彬, 何林帮. 两种多波束反向散射强度数据归一化方法的建立与分析[J]. 海洋学报, 2018, 40(7): 143-149. doi: 10.3969/j.issn.0253-4193.2018.07.012
引用本文: 杨彬, 何林帮. 两种多波束反向散射强度数据归一化方法的建立与分析[J]. 海洋学报, 2018, 40(7): 143-149. doi: 10.3969/j.issn.0253-4193.2018.07.012
Yang Bin, He Linbang. Research on the establishment and analysis about two kinds of multibeam backscatter strength normalization[J]. Haiyang Xuebao, 2018, 40(7): 143-149. doi: 10.3969/j.issn.0253-4193.2018.07.012
Citation: Yang Bin, He Linbang. Research on the establishment and analysis about two kinds of multibeam backscatter strength normalization[J]. Haiyang Xuebao, 2018, 40(7): 143-149. doi: 10.3969/j.issn.0253-4193.2018.07.012

两种多波束反向散射强度数据归一化方法的建立与分析

doi: 10.3969/j.issn.0253-4193.2018.07.012
基金项目: 国家重点研发计划(2016YFB0501700);上海市重点科研计划项目(17DZ1204902)。

Research on the establishment and analysis about two kinds of multibeam backscatter strength normalization

  • 摘要: 多波束反向散射强度数据应用广泛,但由于受到角度响应的影响,导致生成的多波束声呐图像质量偏低,且现有角度响应改正方法在复杂海底底质环境下适应性较差。为此本文对散射强度进行分析,给出了两种多波束反向散射强度数据归一化方法,分别为基于高斯拟合以及角度响应的散射强度改正方法,前者主要是基于散射强度的变化规律进行改正,而后者则是基于声波的散射机理进行改正。实验结果表明两种方法较传统改正方法精度均有约30%的提升,并且角度响应方法较高斯拟合方法改正精度更高,但计算效率有所下降。以上实验验证了两种方法的有效性,实现了散射强度数据的归一化,提升了多波束声呐图像的质量。
  • Gardner J V, Dartnell P, Mayer L A, et al. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping[J]. Marine Environmental Research, 2003, 56(1/2):15-46.
    唐秋华, 李杰, 周兴华,等. 济州岛南部海域海底声呐图像分析与声学底质分类[J]. 海洋学报, 2014, 36(7):133-141. Tang Qiuhua, Li Jie, Zhou Xinghua, et al. Seabed sonar image analysis and acoustic seabed classification in the south of the Cheju Island[J]. Haiyang Xuebao, 2014, 37(7):133-141.
    Clarke J E H, Mayer L A, Wells D E. Shallow-water imaging multibeam sonars:a new tool for investigating seafloor processes in the coastal zone and on the continental shelf[J]. Marine Geophysical Researches, 1996, 18(6):607-629.
    Clarke J H. Toward remote seafloor classification using the angular response of acoustic backscattering:a case study from multiple overlapping GLORIA data[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1):112-127.
    Hammerstade E. Backscattering and seabed image reflectivity[R]. EM Technical Note, 2000.
    Hellequin L, Boucher J M, Lurton X. Processing of high-frequency multibeam echo sounder data for seafloor characterization[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):78-89.
    Clarke J E H, Danforth B W, Valentine P. Areal seabed classification using backscatter angular response at 95kHz[C]//Saclantcen Conference on High Frequency Acoustics in Shallow Water. Lerici, Italy, 1997:243-250.
    唐秋华, 周兴华, 丁继胜, 等. 多波束反向散射强度数据处理研究[J]. 海洋学报, 2006, 28(2):51-55. Tang Qiuhua, Zhou Xinghua, Ding Jisheng, et al. Study on processing of multibeam backscatter data[J]. Haiyang Xuebao, 2006, 28(2):51-55.
    Zhao Jianhu, Yan Jun, Zhang Hongmei, et al. Two self-adaptive methods of improving multibeam backscatter image quality by removing angular response effect[J]. Journal of Marine Science & Technology, 2016, 22(2):1-13.
    金绍华, 翟京生, 刘雁春, 等. 海底入射角对多波束反向散射强度的影响及其改正[J]. 武汉大学学报:信息科学版, 2011, 36(9):1081-1084. Jin Shaohua, Zhai Jingsheng, Liu Yanchun, et al. Influence of seafloor incidence angle on multibeam backscatter intensity and corrected method[J]. Geomatics & Information Science of Wuhan University, 2011, 36(9):1081-1084.
    Gonzalez R C, Woods R E. Digital image processing[J]. Prentice Hall International, 1987, 28(4):484-486.
  • 加载中
计量
  • 文章访问数:  511
  • HTML全文浏览量:  3
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 修回日期:  2018-01-10

目录

    /

    返回文章
    返回