留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积环境对雅浦海沟沉积颗粒物组成和分布的影响

吴彬 李栋 赵军 刘诚刚 孙承君 陈建芳 潘建明 韩正兵 胡佶

吴彬, 李栋, 赵军, 刘诚刚, 孙承君, 陈建芳, 潘建明, 韩正兵, 胡佶. 沉积环境对雅浦海沟沉积颗粒物组成和分布的影响[J]. 海洋学报, 2018, 40(10): 167-179. doi: 10.3969/j.issn.0253-4193.2018.10.016
引用本文: 吴彬, 李栋, 赵军, 刘诚刚, 孙承君, 陈建芳, 潘建明, 韩正兵, 胡佶. 沉积环境对雅浦海沟沉积颗粒物组成和分布的影响[J]. 海洋学报, 2018, 40(10): 167-179. doi: 10.3969/j.issn.0253-4193.2018.10.016
Wu Bin, Li Dong, Zhao Jun, Liu Chenggang, Sun Chengjun, Chen Jianfang, Pan Jianming, Han Zhengbing, Hu Ji. Influence of sedimentary environment on composition and distribution of sediments in the Yap Trench[J]. Haiyang Xuebao, 2018, 40(10): 167-179. doi: 10.3969/j.issn.0253-4193.2018.10.016
Citation: Wu Bin, Li Dong, Zhao Jun, Liu Chenggang, Sun Chengjun, Chen Jianfang, Pan Jianming, Han Zhengbing, Hu Ji. Influence of sedimentary environment on composition and distribution of sediments in the Yap Trench[J]. Haiyang Xuebao, 2018, 40(10): 167-179. doi: 10.3969/j.issn.0253-4193.2018.10.016

沉积环境对雅浦海沟沉积颗粒物组成和分布的影响

doi: 10.3969/j.issn.0253-4193.2018.10.016
基金项目: 国家自然科学基金青年科学基金项目(41606090);国家重点基础研究发展计划(973计划)项目(2015CB755904);国家海洋局第二海洋研究所基本科研业务费专项(JG1516)。

Influence of sedimentary environment on composition and distribution of sediments in the Yap Trench

  • 摘要: 通过对西太平洋雅浦海沟不同水深沉积物中总有机碳(TOC)、总氮(TN)、碳稳定同位素(δ13C)、粒度组成和比表面积(SSA)等参数的分析,探讨了雅浦海沟不同水深沉积颗粒物来源、分布及其影响因素的异同。结果表明,雅浦海沟沉积物TOC含量和δ13C平均值分别为(0.34%±0.14%)和(-20.8‰±0.7‰),其中海洋浮游植物、陆源土壤和维管植物来源有机碳(OC)的贡献分别为(70%±3%)、(22%±3%)和(8%±2%),且不同水深差异不大,海沟内沉积物的横向输运可能是深部沉积OC的重要输入途径。由于水深更深站位沉积颗粒物中具有更强的微生物活动和在水柱中更长的保留时间,导致其TOC和TN含量较低,但δ13C无明显差异。水深较浅站位TN含量、SSA、粒径组成和中值粒径等参数垂向变化波动较更深站位更为显著,表明海沟沟壁水深较浅处物源输入和沉积环境的不稳定。同时,由于低OC含量、低SSA以及高密度的海底火山喷出岩在海沟水深较浅的沟壁坡折处的广泛分布,导致该区域粒径组成与TOC含量无显著相关性,而较深站位中TOC含量与粉砂呈正相关,与砂和黏土含量呈负相关。整体而言,雅浦海沟沉积物中粉砂粒级颗粒物是OC的主要载体,而SSA是影响海沟沉积OC剖面分布的最重要因素。
  • Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490):291-296.
    Riebesell U, Schulz K G, Bellerby R G J, et al. Enhanced biological carbon consumption in a high CO2 ocean[J]. Nature, 2007, 450(7169):545-548.
    Jamieson A J, Fujii T. Trench connection[J]. Biology Letters, 2011, 7(5):641-643.
    Leduc D, Rowden A A, Glud R N, et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench:Possible effects of differences in organic matter supply[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2015, 116:264-275.
    Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4):284-288.
    Oguri K, Kawamura K, Sakaguchi A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake[J]. Scitific Reports, 2013, 3:1915.
    Čížková H, Bina C R. Geodynamics of trench advance:insights from a Philippine-Sea-style geometry[J]. Earth and Planetary Science Letters, 2015, 430:408-415.
    Kobayashi H, Hatada Y, Tsubouchi T, et al. The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor[J]. PLoS One, 2012, 7(8):e42727.
    Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1):401-423.
    Li Zhongqiao, Wang Xinyi, Jin Haiyan, et al. Variations in organic carbon loading of surface sediments from the shelf to the slope of the Chukchi Sea, Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8):131-136.
    Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91:1-11.
    Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt:a sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17/18):2241-2259.
    Nozaki Y, Ohta Y. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench:chemical and radiochemical evidence[J]. Earth and Planetary Science Letters, 1993, 120(3/4):345-360.
    Bao Rui, Strasser M, Mcnichol A P, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Communications, 2018, 9(1):121, doi: 10.1038/s41467-017-02504-1.
    岳新安, 闫艺心, 丁海兵, 等. 雅浦海沟沉积物的生物地球化学特征及其海洋学意义[J]. 中国海洋大学学报, 2018, 48(3):88-96. Yue Xin'an, Yan Yixin, Ding Haibing, et al. Biological geochemical characteristics of the sediments in the Yap Trench and its oceanographic significance[J]. Periodical of Ocean University of China, 2018, 48(3):88-96.
    Fujio S, Yanagimoto D, Taira K. Deep current structure above the Izu-Ogasawara Trench[J]. Journal of Geophysical Research:Oceans, 2000, 105(C3):6377-6386.
    Thistle D. The deep-sea floor:an overview[M]//Tyler P A. Ecosystems of the World, 28:Ecosystems of the Deep Sea. Amsterdam:Elsevier, 2003.
    Taira K, Kitagawa S, Yamashiro T, et al. Deep and bottom currents in the challenger deep, mariana trench, measured with super-deep current meters[J]. Journal of Oceanography, 2004, 60(6):919-926.
    李栋, 赵军, 刘诚刚, 等. 超深渊生境特征及生物地球化学过程研究进展[J]. 地球科学, 2018,doi:10.3799/dqkx.2018.196. Li Dong, Zhao Jun, Liu Chenggang, et al. Advances of living environment characteristics and biogeochemical processes in the hadal zone[J]. Earth Science, 2018,doi:10.3799/dqkx.2018.196.
    Gage J D. Food inputs, utilization, carbon flow and energetics[M]//Tyler P A. Ecosystems of the Deep Ocean (Ecosystems of the World). Amsterdam:Elsevier, 2003.
    Luo Min, Gieskes J, Chen Linying, et al. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope:implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386:98-106.
    Baird B H, White D C. Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico Trench sediments[J]. Marine Geology, 1985, 68(1/4):217-231.
    De Falco G, Magni P, Teräsvuori L M H, et al. Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, Western Mediterranean)[J]. Chemistry and Ecology, 2004, 20(S1):367-377.
    金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106. Jin Bingfu, Lin Zhenhong, Ji Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science, 2003, 21(1):99-106.
    Li Dong, Yao Peng, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang estuary and adjacent shelf:Implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139:409-419.
    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1/2):69-86.
    Johnson G C, Toole J M. Flow of deep and bottom waters in the Pacific at 10°N[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1993, 40(2):371-394.
    Yang Yaomin, Wu Shiguo, Gao Jinwei, et al. Geology of the Yap Trench:new observations from a transect near 10°N from manned submersible Jiaolong[J]. International Geology Review, 2017, doi: 10.1080/00206814.2017.1394226.
    宋永东, 马小川, 张广旭, 等. 西太平洋雅浦海沟区海底热流原位测量[J]. 海洋地质与第四纪地质, 2016, 36(4):51-56. Song Yongdong, Ma Xiaochuan, Zhang Guangxu, et al. Heat flow in-situ measurement at Yap Trench of the western Pacific[J]. Marine Geology & Quaternary Geology, 2016, 36(4):51-56.
    Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413:232-238.
    Carreira R S, Wagener A L R, Readman J W, et al. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil:an elemental, isotopic and molecular marker approach[J]. Marine Chemistry, 2002, 79(3/4):207-227.
    Li Xinxin, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145-147:37-52.
    Bianchi T S, Canuel E A. Chemical Biomarkers in Aquatic Ecosystems[M].New Jersey:Princeton University Press, 2011:1531.
    Alin S R, Aalto R, Goni M A, et al. Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea[J]. Journal of Geophysical Research:Earth Surface, 2008, 113(F1):F01S05.
    Francisquini M I, Lima C M, Pessenda L C R, et al. Relation between carbon isotopes of plants and soils on Marajó Island, a large tropical island:Implications for interpretation of modern and past vegetation dynamics in the Amazon region[J]. Palaeogeography, Palaeoclimatology, Palaづは????????????名?ㄠ?㈱特??1-104.
    Danovaro R, Croce N D, Dell'Anno A, et al. A depocenter of organic matter at 7800 m depth in the SE Pacific ocean[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2003, 50(12):1411-1420.
    Gallo N D, Cameron J, Hardy K, et al. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches:influence of productivity and depth on epibenthic and scavenging communities[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2015, 99:119-133.
    Smith C R, Demopoulos A W J. The deep Pacific ocean floor[M]//Tyler P A. Ecosystems of the Deep Ocean Ecosystems of the World. Amsterdam:Elsevier, 2003.
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4):289-302.
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6):213-250.
    Wu Ying, Eglinton T, Yang Liyang, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(4):1495-1507.
    Ishiwatari R, Yamada K, Matsumoto K, et al. Source of organic matter in sinking particles in the japan trench:molecular composition and carbon isotopic analyses[M]//Handa N, Tanoue E, Hama T. Dynamics and Characterization of Marine Organic Matter[M]. Dordrecht:Springer, 2000.
    Galimov E M. The pattern of δ13Corg versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins:comparison of the Black Sea, Kara Sea, and Cariaco Trench[J]. Chemical Geology, 2004, 204(3/4):287-301.
    Yao Pao, Yu Zhigang, Bianchi T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(7):1407-1429.
    Jamieson A. The Hadal Zone:Life in the Deepest Oceans[M]. Cambridge:Cambridge University Press, 2015.
    汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5):517-520. Wang Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5):517-520.
    谢树成, 杨欢, 罗根明, 等. 地质微生物功能群:生命与环境相互作用的重要突破口[J]. 科学通报, 2012, 57(1):3-22. Xie Shucheng, Yang Huan, Luo Genming, et al. Geomicrobial functional groups:a window on the interaction between life and environments[J]. Chinese Science Bulletin, 2012, 57(1):2-19.
    方家松, 张利. 探索深部生物圈[J]. 中国科学:地球科学, 2011, 54(6):750-759. Fang Jiasong, Zhang Li. Exploring the deep biosphere[J]. Science China:Earth Science, 2011, 54(6):750-759.
    Mantyla A W, Reid J L. Abyssal characteristics of the World Ocean waters[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1983, 30(8):805-833.
    Reeburgh W S. Rates of biogeochemical processes in anoxic sediments[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1):269-298.
    朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4):355-364. Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments:an overview[J]. Advances in Earth Science, 2011, 26(4):355-364.
    吴彬, 李栋, 赵军, 等. 雅浦海沟沉积有机碳垂向分布及其指示意义[J]. 中国环境科学, 2018. Wu Bin, Li Dong, Zhao Jun, et al. Vertical distribution of sedimentary organic carbon in the Yap Trench and its implications[J]. China Environmental Science, 2018.
    Nakatsuka T, Handa N, Harada N, et al. Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its δ15N, δ13 and δ14[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1997, 44(12):1957-1979.
    Hargrave B T. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content[J]. Limnology and Oceanography, 1972, 17(4):583-586.
    Rathburn A E, Levin L A, Tryon M, et al. Geological and biological heterogeneity of the Aleutian margin (1965-4822 m)[J]. Progress in Oceanography, 2009, 80(1/2):22-50.
    Otosaka S, Noriki S. REEs and Mn/Al ratio of settling particles:horizontal transport of particulate material in the northern Japan Trench[J]. Marine Chemistry, 2000, 72(2/4):329-342.
    王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):67-75. Wang Fenlian, He Gaowen, Wang Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4):67-75.
    Dixit S, Van Cappellen P, Van Bennekom A J. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments[J]. Marine Chemistry, 2001, 73(3/4):333-352.
    Loucaides S, Behrends T, Van Cappellen P. Reactivity of biogenic silica:surface versus bulk charge density[J]. Geochimica et Cosmochimica Acta, 2010, 74(2):517-530.
    Loucaides S, Van Cappellen P, Roubeix V, et al. Controls on the recycling and preservation of biogenic silica from biomineralization to burial[J]. Silicon, 2012, 4(1):7-22.
    Nielsen M E, Fisk M R. Data report:specific surface area and physical properties of subsurface basalt samples from the east flank of Juan de Fuca Ridge[J]. Proceedings of the Integrated Ocean Drilling Program, 2008, 301, doi: 10.2204/iodp.proc.301.205.2008.
    Nielsen M E, Fisk M R. Surface area measurements of marine basalts:implications for the subseafloor microbial biomass[J]. Geophysical Research Letters, 2010, 37(15):L15604.
    Krause D C, White W C, Piper D J W, et al. Turbidity currents and cable breaks in the western new britain trench[J]. GSA Bulletin, 1970, 81(7):2153-2160.
    Hollister C D, Mccave I N. Sedimentation under deep-sea storms[J]. Nature, 1984, 309(5965):220-225.
    Wakeham S G, Canuel E A, Lerberg E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J]. Marine Chemistry, 2
  • 加载中
计量
  • 文章访问数:  635
  • HTML全文浏览量:  13
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-06
  • 修回日期:  2018-07-18

目录

    /

    返回文章
    返回