留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南黄海沉积物中活性铁氧化物对有机碳的保存作用

陶婧 马伟伟 李文君 李铁 朱茂旭

陶婧, 马伟伟, 李文君, 李铁, 朱茂旭. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J]. 海洋学报, 2017, 39(8): 16-24. doi: 10.3969/j.issn.0253-4193.2017.08.002
引用本文: 陶婧, 马伟伟, 李文君, 李铁, 朱茂旭. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J]. 海洋学报, 2017, 39(8): 16-24. doi: 10.3969/j.issn.0253-4193.2017.08.002
Tao Jing, Ma Weiwei, Li Wenjun, Li Tie, Zhu Maoxu. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments[J]. Haiyang Xuebao, 2017, 39(8): 16-24. doi: 10.3969/j.issn.0253-4193.2017.08.002
Citation: Tao Jing, Ma Weiwei, Li Wenjun, Li Tie, Zhu Maoxu. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments[J]. Haiyang Xuebao, 2017, 39(8): 16-24. doi: 10.3969/j.issn.0253-4193.2017.08.002

南黄海沉积物中活性铁氧化物对有机碳的保存作用

doi: 10.3969/j.issn.0253-4193.2017.08.002
基金项目: 国家自然科学基金(41576078);山东省自然科学基金(ZR2015DM006);国家重点研发计划项目(2016YFA0601301)。

Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments

  • 摘要: 土壤和沉积物中活性铁对有机质的吸附对有机质具有长期稳定和保存作用,从而在地质时间尺度上缓冲大气CO2浓度。本文利用连二亚硫酸钠还原性溶解提取活性铁氧化物(FeR)及与之结合的有机碳(Fe-OC),定量研究了南黄海沉积物中FeR与OC之间的结合方式以及FeR对OC的保存作用,讨论了深度增加对二者相互作用的影响。结果表明,南黄海沉积物中Fe-OC占沉积物总有机碳的份数(fFe-OC)为(13.2±7.47)%,即活性铁对OC的年吸附量为0.72 Mt,占全球边缘海沉积物TOC年埋藏通量的0.44%。Fe-OC的平均OC:Fe为4.50±2.61,表明共沉淀作用对有机质的保存起重要作用,且其比值随海源有机质含量增加而增加。Fe-OC稳定碳同位素(δ13CFe-OC)结果表明,FeR优先保存活性有机质,但这种选择性随OC:Fe增大而减弱。随深度增加,fFe-OC和δ13CFe-OC均未表现出显著变化,这与该海域沉积物中有机质活性较低、铁还原作用较弱有关。
  • Smith R W, Bianchi T S, Allison M, et al. High rates of organic carbon burial in fjord sediments globally[J]. Nature Geoscience, 2015, 8(6):450-453.
    Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391(6667):572-575.
    Müller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1979, 26(12):1347-1362.
    Schubert C J, Stein R. Deposition of organic carbon in Arctic Ocean sediments:terrigenous supply vs marine productivity[J]. Organic Geochemistry, 1996, 24(4):421-436.
    Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7/8):319-361.
    Eusterhues K, Rumpel C, Kleber M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry, 2003, 34(12):1591-1600.
    Kaiser K, Guggenberger G. Sorptive stabilization of organic matter by microporous goethite:sorption into small pores vs. surface complexation[J]. European Journal of Soil Science, 2007, 58(1):45-59.
    Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7/8):711-725.
    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388):198-200.
    Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19):8122-8130.
    Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 2016, 43(3):1149-1157.
    Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2016, 43(19):10286-10294.
    Zhao Qian, Poulson S R, Obrist D, et al. Iron-bound organic carbon in forest soils:quantification and characterization[J]. Biogeosciences, 2016, 13(16):4777-4788.
    Grybos M, Davranche M, Gruau G, et al. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions[J]. Geoderma, 2009, 154(1/2):13-19.
    Adhikari D, Yang Yu. Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports, 2015, 5:11214.
    Adhikari D, Poulson S R, Sumaila S, et al. Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes[J]. Chemical Geology, 2016, 430:13-20.
    Henneberry Y K, Kraus T E C, Nico P S, et al. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions[J]. Organic Geochemistry, 2012, 48:81-89.
    Song Guodong, Liu Sumei, Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2016, 124:53-63.
    Hu Limin, Shi Xuefa, Guo Zhigang, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea:the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335:52-63.
    Yang Shouye, Youn J S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology, 2007, 243(1/4):229-241.
    Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting:the Yellow Sea[J]. Marine Geology, 1991, 98(1):51-72.
    赵一阳, 李凤业, DeMaster D J, 等. 南黄海沉积速率和沉积通量的初步研究[J]. 海洋与湖沼, 1991, 22(1):38-43. Zhao Yiyang, Li Fengye, DeMaster D J, et al. Preliminary studies on sedimentation rate and sediment flux of the south Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1991, 22(1):38-43.
    Zhou Liangyong, Liu Jian, Saito Y, et al. Coastal erosion as a major sediment supplier to continental shelves:example from the abandoned Old Huanghe (Yellow River) delta[J]. Continental Shelf Research, 2014, 82:43-59.
    Zhang Shengyin, Li Shuang, Dong Heping, et al. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China:Evidence based on macroelements and n-alkanes[J]. Marine Pollution Bulletin, 2014, 88(1/2):389-397.
    张生银, 李双林, 董贺平, 等. 南黄海中部表层沉积物有机质分布与分子组成研究[J]. 沉积学报, 2013, 31(3):497-508. Zhang Shengyin, Li Shuanglin, Dong Heping, et al. Distribution and molecular composition of organic matter in surface sediments from the central part of south Yellow Sea[J]. Acta Sedimentologica Sinica, 2013, 31(3):497-508.
    Lin Tian, Wang Lifang, Chen Yingjun, et al. Sources and preservation of sedimentary organic matter in the Southern Bohai Sea and the Yellow Sea:evidence from lipid biomarkers[J]. Marine Pollution Bulletin, 2014, 86(1/2):210-218.
    Tao Shuqin, Eglinton T I, Montluçon D B, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191:70-88.
    Bao Rui, McIntyre C, Zhao Meixun, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10):791-794.
    Stookey L L. Ferrozine-a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 1970, 42(7):779-781.
    Shi Xuefa, Shen Shunxi, Yi H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48:1.
    Cai Deling, Shi Xuefa, Zhou Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea:evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48(S1):21-29.
    Pang Chongguang, Li Kun, Hu Dunxin. Net accumulation of suspended sediment and its seasonal variability dominated by shelf circulation in the Yellow and East China Seas[J]. Marine Geology, 2016, 371:33-43.
    Poulton S W, Raiswell R. The low-temperature geochemical cycle of iron:from continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9):774-805.
    Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):25-35.
    Riedel T, Zak D, Biester H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25):10101-10105.
    Chen Chunmei, Dynes J J, Wang Jian, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23):13751-13759.
    Hyun J H, Mok J S, Cho H Y, et al. Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea[J]. Biogeochemistry, 2009, 92(3):231-245.
    Peng Songyao, Li Xinzheng, Wang Hongfa, et al. Macrobenthic community structure and species composition in the Yellow Sea and East China Sea in jellyfish bloom[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3):576-594.
    Wang Xuchen, Druffel E R M, Griffin S, et al. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1998, 62(8):1365-1378.
    Yoon S H, Kim J H, Yi H I, et al. Source, composition and reactivity of sedimentary organic carbon in the river-dominated marginal seas:a study of the eastern Yellow Sea (the northwestern Pacific)[J]. Continental Shelf Research, 2016, 125:114-126.
  • 加载中
计量
  • 文章访问数:  952
  • HTML全文浏览量:  14
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-02-22

目录

    /

    返回文章
    返回