留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超慢速扩张环境下超镁铁质岩系统的热液硫化物成矿机理以及启示

曹红 孙治雷 刘昌岭 姜学钧 何拥军 黄威 尚鲁宁 王利波 张喜林 耿威 施美娟 李东义

曹红, 孙治雷, 刘昌岭, 姜学钧, 何拥军, 黄威, 尚鲁宁, 王利波, 张喜林, 耿威, 施美娟, 李东义. 超慢速扩张环境下超镁铁质岩系统的热液硫化物成矿机理以及启示[J]. 海洋学报, 2018, 40(4): 61-75. doi: 10.3969/j.issn.0253-4193.2018.04.006
引用本文: 曹红, 孙治雷, 刘昌岭, 姜学钧, 何拥军, 黄威, 尚鲁宁, 王利波, 张喜林, 耿威, 施美娟, 李东义. 超慢速扩张环境下超镁铁质岩系统的热液硫化物成矿机理以及启示[J]. 海洋学报, 2018, 40(4): 61-75. doi: 10.3969/j.issn.0253-4193.2018.04.006
Cao Hong, Sun Zhilei, Liu Changling, Jiang Xuejun, He Yongjun, Huang Wei, Shang Luning, Wang Libo, Zhang Xilin, Geng Wei, Shi Meijuan, Li Dongyi. The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge[J]. Haiyang Xuebao, 2018, 40(4): 61-75. doi: 10.3969/j.issn.0253-4193.2018.04.006
Citation: Cao Hong, Sun Zhilei, Liu Changling, Jiang Xuejun, He Yongjun, Huang Wei, Shang Luning, Wang Libo, Zhang Xilin, Geng Wei, Shi Meijuan, Li Dongyi. The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge[J]. Haiyang Xuebao, 2018, 40(4): 61-75. doi: 10.3969/j.issn.0253-4193.2018.04.006

超慢速扩张环境下超镁铁质岩系统的热液硫化物成矿机理以及启示

doi: 10.3969/j.issn.0253-4193.2018.04.006
基金项目: 国家自然科学基金项目(40872063,41606086);国家重点研发计划项目(2017YFC0307704);全国海陆成矿图件编制更新(DD20160344);中国地质调查局海洋地质调查二级项目(DD20160218)。

The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge

  • 摘要: 西南印度洋63.5°E热液区是在超慢速扩张洋脊发现的首个超镁铁质岩热液系统。对取自该区的热液硫化物样品进行了系统的矿物学和地球化学分析,矿物学分析结果表明:该热液区硫化物为富Fe型高温硫化物,且经历了较深程度的氧化蚀变,大量中间态的Fe氧化物充填在硫化物矿物间的孔隙及内部解理中;这些硫化物相以白铁矿为主,其次是等轴古巴矿和少量铜蓝,缺乏黄铁矿、闪锌矿。据推断,该区的热液成矿作用分为4个阶段:低温白铁矿阶段→高温等轴古巴矿阶段→自形白铁矿阶段→后期海底风化阶段(少量铜蓝以及大量的Fe的羟氧化物)。与之相对应,地球化学分析结果表明这些硫化物的Fe含量较高(31.57%~44.59%),Cu含量次之(0.16%~7.24%),而Zn含量普遍较低(0.01%~0.11%);微量元素较为富集Co(328×10-6~2 400×10-6)和Mn(48.5×10-6~1 730×10-6)。该区硫化物中较高含量的Fe、Co与超镁铁质岩热液系统相似,明显高于镁铁质岩热液系统。独特的热液硫化物矿物学特征和元素组成可能与该区普遍出露的地幔岩、橄榄岩蛇纹石化作用以及拆离断层的广泛发育的环境有关。
  • Alt J C, Lonsdale P, Haymon R, et al. Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise[J]. Geological Society of America Bulletin, 1987, 98(2):157-168.
    Hekinian R, Francheteau J, Renard V, et al. Intense hydrothermal activity at the axis of the east pacific rise near 13°N:sumbersible witnesses the growth of sulfide chimney[J]. Marine Geophysical Researches, 1983, 6(1):1-14.
    彭晓彤, 周怀阳. EPR 9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科D辑:地球科学, 2005, 35(8):720-728. Peng Xiaotong, Zhou Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N:a structural and mineralogical study[J]. Science in China Series D:Earth Sciences, 2005, 35(8):720-728.
    Rona P A. Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1):1-104.
    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17):3511-3524.
    曾志刚, 秦蕴珊, 赵一阳, 等. 大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋与湖沼, 2000, 31(5):518-529. Zeng Zhigang, Qin Yunshan, Zhao Yiyang, et al. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications[J]. Oceanologia et Limnologia Sinica, 2000, 31(5):518-529.
    蒋少涌, 杨涛, 李亮, 等. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究[J]. 岩石学报, 2006, 22(10):2597-2602. Jiang Shaoyong, Yang Tao, Li Liang, et al. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Acta Petrologica Sinica, 2006, 22(10):2597-2602.
    Craig H, Horibe Y, Fariey K A, et al. Hydrothermal vents in the Mariana Trough:results of the first Alvin dives[J]. EOS, 1987, 68:1531.
    Fouquet Y, Charlou J L, Stackelberg U, et al. Metallogenesis in back-arc environments:the Lau Basin example[J]. Economic Geology, 1993, 88:2154-2181.
    Fryer P. Geology of the mariana trough[M]//Taylor B. Back-Arc Basins:Tectonics and Magmatism. New York:Springer, 1995:237-279.
    Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56'E-Mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001, 177(3/4):341-349.
    Baker E T, Edmonds H N, Michael P J, et al. Hydrothermal venting in magma deserts:the ultraslow-spreading gakkel and southwest Indian ridges[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8):Q08002.
    孙治雷, 周怀阳, 杨群慧, 等. 现代洋底低温富Si烟囱体的构建:以劳盆地CDE热液场为例[J]. 中国科学:地球科学, 2012, 42(10):1544-1558. Sun Zhilei, Zhou Huaiyang, Yang Qunhui, et al. Growth model of a hydrothermal low-temperature Si-rich chimney:example from the CDE hydrothermal field, Lau Basin[J]. Science China Earth Sciences, 2012, 55(10):1716-17360.
    Herzig P M, Plueger W L. Exploration for hydrothermal activity near the Rodriguez triple junction, Indian Ocean[J]. The Canadian Mineralogist, 1988, 26(3):721-736.
    翟世奎, 于增慧, 杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报, 2007, 29(1):58-65. Zhai Shikui, Yu Zenghui, Du Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Haiyang Xuebao, 2007, 29(1):58-65.
    Tucholke B E, Lin J. A geological model for the structure of ridge segments in slow spreading ocean crust[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B6):11937-11958.
    Augustin N, Paulick H, Lackschewitz K S, et al. Alteration at the ultramafic-hosted Logatchev hydrothermal field:Constraints from trace element and Sr-O isotope data[J]. Geochemistry Geophysics Geosystems, 2012, 13(3):Q0AE07.
    Zhou Haiyang, Dick H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 2013, 494(7436):195-200.
    Wetzel L R, Shock E L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B4):8319-8340.
    Mozgova N N, Efimov A V, Borodaev Y S, et al. Mineralogy and chemistry of massive sulfides from the Logatchev hydrothermal field (14°45'N Mid-Atlantic Ridge)[J]. Exploration and Mining Geology, 1999, 8(3/4):379-395.
    Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system:from serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides[J]. Marine Geology, 2007, 245(1/4):20-39.
    Charlou J L, Donval J P, Konn C, et al. High production of H2 and CH4 and abiotic hydrocarbons in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2010, 74(12):A163.
    Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 2003, 206(3/4):509-528.
    Mendel V, Sauter D, Parson L, et al. Segmentation and morphotectonic variations along a super slow-spreading center:the southwest Indian ridge (57°E-70°E)[J]. Marine Geophysical Researches, 1997, 19(6):505-533.
    Payot B D, Arai S, Dick H J B, et al. Podiform chromitite formation in a low-Cr/high-Al system:An example from the Southwest Indian Ridge (SWIR)[J]. Mineralogy & Petrology, 2014, 108(4):533-549.
    Michael P J, Langmuir C H, Dick H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean[J]. Nature, 2003, 423(6943):956-961.
    Sauter D, Cannat M, Mendel V. Magnetization of 0-26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°-67°E[J]. Geochemistry Geophysics Geosystems, 2008, 9(4):1-23.
    Searle R C, Bralee A V. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64°E[J]. Geochemistry Geophysics Geosystems, 2007, 8(5):1-28.
    Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7):605-608.
    Nayak B, Halbach P, Pracejus B, et al. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis[J]. Ore Geology Reviews, 2014, 63:115-128.
    Fujimoto H, Cannat M, Fujioka K, et al. First submersible investigations of mid-ocean ridges in the Indian Ocean[J]. Inter Ridge News, 1999, 8(1):22-24.
    Fleet M E. Structural aspects of the marcasite-pyrite transformation[J]. The Canadian Mineralogist, 1970, 10(2):225-231.
    Koski R A, Clague D A, Oudin E. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge[J]. Geological Society of America Bulletin, 1984, 95(8):930-945.
    Graham U M, Bluth G J, Ohmoto H. Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part Ⅰ, mineralogy and paragenesis[J]. The Canadian Mineralogist, 1988, 26(3):487-504.
    Caye R, Cervelle B, Cesbron F, et al. Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3[J]. Mineralogical Magazine, 1988, 52(367):509-514.
    Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350℃ and 300℃[J]. Economic Geology, 1975, 70(4):806-823.
    Lusk J, Bray D M. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu-Fe-S and Fe-S systems at 1 bar and temperatures between 185 and 460℃[J]. Chemical Geology, 2002, 192(3/4):227-248.
    Mozgova N N, Efimov A V, Borodaev Y S, et al. Mineralogy and chemistry of massive sulfides from the Logatchev hydrothermal field (14°45'N Mid-Atlantic Ridge)[J]. Exploration & Mining Geology, 1999, 8(3):379-395.
    Blackman D K, Karson J A, Kelley D S, et al. Geology of the Atlantis massif (Mid-Atlantic Ridge, 30°N):implications for the evolution of an ultramafic oceanic core complex[J]. Marine Geophysical Researches, 2002, 23(5/6):443-469.
    Hannington M D, De Ronde C D J. Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Colorado, USA:Society of Economic Geologists, Inc., 2005:111-141.
    陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):1812-1822. Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59(19):2266-2276.
    Gülaçar O F, Delaloye M. Geochemistry of nickel, cobalt and copper in alpine-type ultramafic rocks[J]. Chemical Geology, 1976, 17:269-280.
    Shiga Y. Behavior of iron, nickel, cobalt and sulfur during serpentinization, with reference to the hayachine ultramafic rocks of the kamaishi mining district, northeastern japan[J]. The Canadian Mineralogist, 1987, 25(4):611-624.
    Alt J C, Shanks W C. Sulfur contents and S, C and O isotopic compositions in serpentinized peridotites at ODP Site 153-920[Z]. Geochimica et Cosmochimica Acta, 2003,67(4), 641-653.
    Devey C W, German C R, Haase K M, et al. The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C.:American Geophysical Union, 2010:8499-8527.
    Ringwood A E. The principles governing trace element distribution during magmatic crystallization Part Ⅰ:The influence of electronegativity[J]. Geochimica et Cosmochimica Acta, 1955, 7(3/4):189-202.
    Trefry J H, Butterfield D B, Metz S, et al. Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B3):4925-4935.
    Maslennikov V V, Maslennikova S P, Khadisov M B. Comparative analysis of accessory mineral associations in hydrothermal sulfide sediments and products of their submarine supergenesis[J]. Metallogeniya Drevnikh i Sovremennykh Okeanov Materialy Nauchnoy Studencheskoy Shkoly, 2009, 15:247-251.
    Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41(1):52-67.
    Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26):2828-2838.
    Ye Jun, Shi Xuefa, Yang Yaomin, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E[J]. Acta Oceanologica Sinica, 2012, 31(6):72-82.
    Haymon R M, Kastner M. The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21°N[J]. Geochimica et Cosmochimica Acta, 1986, 50(9):1933-1939.
    Koski R A, Jonasson I R, Kadko D C, et al. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B3):4813-4832.
    Tivey M K, Delaney J R. Growth of large sulfide structures on the Endeavour Segment of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 1986, 77(3/4):303-317.
    Bischoff J L, Rosenbauer R J. The critical point and two-phase boundary of seawater, 200-500℃[J]. Earth and Planetary Science Letters, 1984, 68(1):172-180.
    Seyfried Jr W E, Foustoukos D I, Allen D E. Ultramafic-hosted hydrothermal systems at mid-ocean ridges:chemical and physical controls on pH, redox and carbon reduction reactions[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges. Washington, DC:American Geophysical Union, 2004:267-284.
    Murowchick J B, Barnes H L. Marcasite precipitation from hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 1986, 50(12):2615-2629.
    Rona P A, Bogdanov Y A, Gurvich E G, et al. Relict hydrothermal zones in the TAG hydrothermal field, Mid-Atlantic Ridge 26°N, 45°W[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6):9715-9730.
    Lalou C, Reyss J L, Brichet E, et al. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B9):17855-17862.
    Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45'N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos, 2009, 112(1):40-56.
    German C R, Klinkhammer G P, Rudnicki M D. The rainbow hydrothermal plume, 36°15'N, MAR[J]. Geophysical Research Letters, 1996, 23(21):2979-2982.
    Beltenev V E, Ivanov V N, Rozhdestvenskaya I I, et al. A new hydrothermal field at 13°30'N on the Mid-Atlantic Ridge[J]. InterRidge News, 2007, 16:9-10.
    Beltenev V E, Nescheretov A V, Shilov V V, et al. New discoveries at 12°58'N, 44°52'W, MAR:Professor Logatchev-22 cruise, initial results[J]. InterRidge News, 2003, 12(1):13-14.
    Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat:the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 2008, 275(1/2):61-69.
    Wang Yejian, Han Xiqiu, Petersen S, et al. Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge[J]. Marine Geology, 2014, 354:69-80.
  • 加载中
计量
  • 文章访问数:  774
  • HTML全文浏览量:  8
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-12-04

目录

    /

    返回文章
    返回