月球Reiner Gamma漩涡地区物质的光度行为及分类

张江, 凌宗成, 李勃, 武中臣. 月球Reiner Gamma漩涡地区物质的光度行为及分类[J]. 岩石学报, 2016, 32(1): 113-118.
引用本文: 张江, 凌宗成, 李勃, 武中臣. 月球Reiner Gamma漩涡地区物质的光度行为及分类[J]. 岩石学报, 2016, 32(1): 113-118.
ZHANG Jiang, LING ZongCheng, LI Bo, WU ZhongChen. Photometric behaviors and classification of Reiner Gamma swirl materials[J]. Acta Petrologica Sinica, 2016, 32(1): 113-118.
Citation: ZHANG Jiang, LING ZongCheng, LI Bo, WU ZhongChen. Photometric behaviors and classification of Reiner Gamma swirl materials[J]. Acta Petrologica Sinica, 2016, 32(1): 113-118.

月球Reiner Gamma漩涡地区物质的光度行为及分类

  • 基金项目:

    本文受国家自然科学基金项目(41490634、41473065、U1231103、41373068)、科技部基础性工作专项(2015FY210500)、山东省自然科学基金(JQ201511、ZR2015DQ001)、山东大学(威海)青年学者未来计划(2015WHWLJH14)和中国科学院月球与深空探测重点实验室开放基金项目联合资助.

详细信息

Photometric behaviors and classification of Reiner Gamma swirl materials

More Information
  • 月球漩涡是月球表面具有磁场异常和光度异常的独特地质特征,其成因目前仍存在争议。本文以典型的Reiner Gamma漩涡为例,利用LROC WAC观测数据,建立该地区主要地质单元(明亮斑纹、暗带和周边月海)的光度模型。研究表明,除光谱特性外,漩涡地区各地质单元的光度行为可作为物质分类的重要依据。Reiner Gamma漩涡地区的明亮斑纹与暗带和周边月海的光度特性完全不同,其异常光度行为(相函数参数)可能与漩涡的强水平方向磁场存在关联。暗带与周边月海的亮度和光谱特性相近,但具有明显不同的相函数参数,其光度行为介于周边月海和明亮斑纹之间,表明它们的月壤物理特性存在差异。
  • 加载中
  • [1]

    Anderson JA, Sides SC, Soltesz DL, Sucharski TL and Becker KJ. 2004. Modernization of the integrated software for imagers and spectrometers. In: Proceedings of the 35th Lunar and Planetary Science Conference. Houston, TX: Lunar and Planetary Institute, 35: 2039

    [2]

    Blewett DT, Coman EI, Hawke BR, Gillis-Davis JJ, Purucker ME and Hughes CG. 2011. Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. Journal of Geophysical Research: Planets, 116(E2), doi: 10.1029/2010JE003656

    [3]

    Denevi BW, Robinson MS, Boyd AK, Sato H, Hapke BW and Hawke BR. 2014. Characterization of space weathering from Lunar Reconnaissance Orbiter Camera ultraviolet observations of the Moon. Journal of Geophysical Research: Planets, 119(5): 976-997

    [4]

    El-Baz F. 1972. The Alhazen to Abul Wáfa swirl belt: An extensive field of light-colored, sinuous markings. Apollo 16: Preliminary Science Report, NASA SP-315: 29-93

    [5]

    Garrick-Bethell I, Head JW and Pieters CM. 2011. Spectral properties, magnetic fields, and dust transport at lunar swirls. Icarus, 212(2): 480-492

    [6]

    Glotch TD, Bandfield JL, Lucey PG, Hayne PO, Greenhagen BT, Arnold JA, Ghent RR and Paige DA. 2015. Formation of lunar swirls by magnetic field standoff of the solar wind. Nature Communications, 6(6189), doi: 10.1038/ncomms7189

    [7]

    Hapke B. 2012a. Theory of Reflectance and Emittance Spectroscopy. 2nd Edition. New York: Cambridge University Press, 1-513

    [8]

    Hapke B. 2012b. Bidirectional reflectance spectroscopy 7: The single particle phase function hockey stick relation. Icarus, 221(2): 1079-1083

    [9]

    Hemingway D and Garrick-Bethell I. 2012. Magnetic field direction and lunar swirl morphology: Insights from Airy and Reiner Gamma. Journal of Geophysical Research: Planets, 117(E10), doi: 10.1029/2012JE004165

    [10]

    Hood LL, Coleman PJ and Wilhelms DE. 1979. A study on lunar nearside magnetic anomalies. In: Merrill RB (ed.). Proceedings of the 10th Lunar and Planetary Science Conference. Houston, TX: Lunar and Planetary Institute, 10: 561-563

    [11]

    Hood LL and Schubert G. 1980. Lunar magnetic anomalies and surface optical properties. Science, 208(4439): 49-51

    [12]

    Hood LL and Williams CR. 1989. The lunar swirls: Distribution and possible origins. In: Proceedings of the 19th Lunar and Planetary Science Conference. Houston, TX: Lunar and Planetary Institute, 19: 99-113

    [13]

    Kaydash V, Kreslavsky M, Shkuratov Y, Gerasimenko S, Pinet P, Josser JL, Beauvivre S and Foing B. 2009. Photometric anomalies of the lunar surface studied with SMART-1 AMIE data. Icarus, 202(2): 393-413

    [14]

    Kramer GY, Besse S, Dhingra D, Nettles J, Klima R, Garrick-Bethell I, Clark RG, Combe JP, Head JW, Taylor LA, Pieters CM, Boardman J and McCord TB. 2011. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. Journal of Geophysical Research: Planets, 116(E9), doi: 10.1029/2010JE003729

    [15]

    Richmond NC, Hood LL, Mitchell DL, Lin RP, Acuña MH and Binder AB. 2005. Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins. Journal of Geophysical Research: Planets, 110(E5), doi: 10.1029/2005JE002405

    [16]

    Sato H, Robinson MS, Hapke B, Denevi BW and Boyd AK. 2014. Resolved Hapke parameter maps of the Moon. Journal of Geophysical Research: Planets, 119(8): 1775-1805

    [17]

    Sayal MB and Schultz PH. 2015. Cometary impact effects at the Moon: Implications for lunar swirl formation. Icarus, 257: 194-206

    [18]

    Schultz PH and Srnka LJ. 1980. Cometary collisions on the Moon and Mercury. Nature, 284(5751): 22-26

  • 加载中
计量
  • 文章访问数:  4839
  • PDF下载数:  5329
  • 施引文献:  0
出版历程
收稿日期:  2015-07-01
修回日期:  2015-10-10
刊出日期:  2016-01-31

目录