月球哥白尼纪地层特征与地质演化研究

丁孝忠, 王梁, 郭弟均, 王翔, 韩坤英, 庞健峰, 王丹, 陶亮. 月球哥白尼纪地层特征与地质演化研究[J]. 岩石学报, 2016, 32(1): 10-18.
引用本文: 丁孝忠, 王梁, 郭弟均, 王翔, 韩坤英, 庞健峰, 王丹, 陶亮. 月球哥白尼纪地层特征与地质演化研究[J]. 岩石学报, 2016, 32(1): 10-18.
DING XiaoZhong, WANG Liang, GUO DiJun, WANG Xiang, HAN KunYing, PANG JianFeng, WANG Dan, TAO Liang. Study on geological evolution and stratigraphic features of the Copernican Period of the Moon[J]. Acta Petrologica Sinica, 2016, 32(1): 10-18.
Citation: DING XiaoZhong, WANG Liang, GUO DiJun, WANG Xiang, HAN KunYing, PANG JianFeng, WANG Dan, TAO Liang. Study on geological evolution and stratigraphic features of the Copernican Period of the Moon[J]. Acta Petrologica Sinica, 2016, 32(1): 10-18.

月球哥白尼纪地层特征与地质演化研究

  • 基金项目:

    本文受科技部科技基础性工作专项(2015FY210500)、国家高技术研究发展计划"863"项目(2009AA122201)、国家自然科学基金重大项目(41490634)、中国科学院地球化学研究所领域前沿项目(Y2ZZ031000-02)、国家重大科技专项"高分辨率对地观测系统"和民用航天十二五预研项目联合资助.

Study on geological evolution and stratigraphic features of the Copernican Period of the Moon

  • 月球哥白尼纪地层是月球演化历史中最年轻的地层单元,哥白尼纪撞击坑数量较少,但其形成的哥白尼纪地层却是全球性的、非常显著的,大多学者普遍认为哥白尼纪基本没有岩浆活动与构造活动。通过对月球哥白尼纪地层进行地质填图,认为月球高地地区撞击坑辐射纹相对月海地区辐射纹发育更好,推测其原因可能为高地与月海岩石性质不同,或撞击的小天体体积、能量、物质特征以及撞击的角度、速度不同等原因导致的;哥白尼纪地层可划分为早哥白尼世地层(C1)、中哥白尼世地层(C2)和晚哥白尼世地层(C3),通过对各世典型撞击坑的分析与研究,阐述了哥白尼纪各世地层的特征,为开展月球晚期撞击作用特征与效应的研究提供了资料。对哥白尼纪-爱拉托逊纪地层界限进行了初步探讨,提出月球年代学多源数据综合判别法方案,以重新厘定哥白尼纪年代下限。
  • 加载中
  • [1]

    Alexander Jr EC, Bates A, Coscio Jr MR et al. 1976. K/Ar dating of lunar soils. Ⅱ. In: Proceedings of the 7th Lunar Science Conference. New York: Pergamon Press, 1: 625-648

    [2]

    Bernatowicz TJ, Hohenberg CM, Hudson B et al. 1978. Argon ages for lunar breccias 14064 and 15405. In: Proceedings of the 9th Lunar Science Conference. New York: Pergamon Press, 1: 905-919

    [3]

    Bogard DD, Garrison DH, Shih CY et al. 1994. 39Ar-40Ar dating of two lunar granites: The age of copernicus. Geochimica et Cosmochimica Acta, 58(14): 3093-3100

    [4]

    Claeys P and Morbidelli A. 2011. Late Heavy Bombardment. Berlin Heidelberg: Springer, 909-912

    [5]

    Deutsch A and Stöffler D. 1987. Rb-Sr-analyses of Apollo 16 melt rocks and a new age estimate for the imbrium basin: Lunar basin chronology and the early heavy bombardment of the moon. Geochimica et Cosmochimica Acta, 51(7): 1951-1964

    [6]

    Ding XZ, Wang L, Han KY et al. 2014. The lunar digital geological mapping based on ArcGIS: Taking the Arctic Region as an example. Earth Science Frontiers, 21(6): 19-30 (in Chinese with English abstract)

    [7]

    Dundas CM and McEwen AS. 2007. Rays and secondary craters of Tycho. Icarus, 186(1): 31-40

    [8]

    Eberhardt P, Geiss J, Grögler N et al. 1973. How old is the crater copernicus? The Moon, 8(1-2): 104-114

    [9]

    Gomes R, Levison HF, Tsiganis K et al. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435(7041): 466-469

    [10]

    Grier JA, Mcewen AS, Lucey PG et al. 2001. Optical maturity of ejecta from large rayed lunar craters. Journal of Geophysical Research: Planets, 106(E12): 32847-32862

    [11]

    Guinness EA and Arvidson RE. 1977. On the constancy of the lunar cratering flux over the past 3.3 billion yr. In: Proceedings of the 8th Lunar Science Conference. New York: Pergamon Press, 3: 3475-3494

    [12]

    Hartmann WK. 1972. Paleocratering of the moon: Review of post-Apollo data. Astrophysics and Space Science, 17(1): 48-64

    [13]

    Hartmann WK, Strom RG, Weidenschilling SJ et al. 1981. Chronology of Planetary Volcanism by Comparative Studies of Planetary Cratering. New York: Pergamon Press, 1049-1127

    [14]

    Hawke BR, Blewett DT, Lucey PG et al. 1999. The composition and origin of selected lunar crater rays. In: New Views of the Moon 2: Understanding the Moon through the Integration of Diverse Datasets. Lunar and Planetary Exploration, 22

    [15]

    Hawke BR, Blewett DT, Lucey PG et al. 2004. The origin of lunar crater rays. Icarus, 170(1): 1-16

    [16]

    Head JW and Wilson L. 1992. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica et Cosmochimica Acta, 56(6): 2155-2175

    [17]

    Jessberger E, Kirsten T and Staudacher T. 1977. One rock and many ages: Further K-Ar dat on consortium breccia 73215. In: Proceedings of the 8th Lunar Science Conference. New York: Pergamon Press, 2567-2580

    [18]

    Jolliff BL, Wieczorek MA, Shearer CK et al. 2006. New Views of the Moon. Chantilly, Virginia: Mineralogical Society of America

    [19]

    Lucey PG, Blewett DT, Taylor GJ et al. 2000. Imaging of lunar surface maturity. Journal of Geophysical Research: Planets, 105(E8): 20377-20386

    [20]

    Meyer Jr C, Brett R, Hubbard NJ et al. 1971. Mineralogy, chemistry, and origin of the kreep component in soil samples from the ocean of storms. In: Proceedings of the 2nd Lunar Science Conference. New York: Pergamon Press, 393-411

    [21]

    Nakamura Y, Lammlein D, Latham G et al. 1973. New seismic data on the state of the deep lunar interior. Science, 181(4094): 49-51

    [22]

    Neukum G and König B. 1976. Dating of individual lunar craters. In: Proceedings of the 7th Lunar Science Conference. New York: Pergamon Press, 2867-2881

    [23]

    Neukum G and Ivanov BA. 1994. Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet and asteroid cratering data. In: Hazard due to Comets and Asteroids. Tucson, Arizona: University of Arizona Press, 359-416

    [24]

    Ouyang ZY. 2005. Introduction to Lunar Science. Beijing: China Aerospace Press, 1-362 (in Chinese)

    [25]

    Ryder G and Spudis P. 1987. Chemical composition and origin of apollo 15 impact melts. Journal of Geophysical Research: Solid Earth, 92(B4): E432-E446

    [26]

    Ryder G, Bogard D and Garrison D. 1991. Probable age of autolycus and calibration of lunar stratigraphy. Geology, 19: 143-146

    [27]

    Shoemaker EM and Hackman RJ. 1962. Stratigraphic basis for a lunar time scale. In: In the Moon: Proceedings of Symposium No.14 of the International Astronomical Union, Leningrad, 1960. New York: Academic Press, 289-300

    [28]

    Silver LT. 1971. U-Th-Pb isotope in Apollo 11 and Apollo 12 regolithic materials and a possible Copernicus impact event. Transactions American Geophysical Union, 52: 534

    [29]

    Soderblom LA, Boyce JM, Arnold JR et al. 1977. Regional variations in the lunar maria-age, remanent magnetism, and chemistry. In: Proceedings of the 8th Lunar Science Conference. New York: Pergamon Press, 1: 1191-1199

    [30]

    Stadermann FJ, Heusser E, Jessberger EK et al. 1991. The case for a younger imbrium basin: 40Ar-39Ar ages of Apollo 14 rocks. Geochimica et Cosmochimica Acta, 55(8): 2339-2349

    [31]

    Stöffler D, Bischoff A, Borchardt R et al. 1985. Composition and evolution of the lunar crust in the descartes highlands, Apollo 16. Journal of Geophysical Research: Solid Earth, 90(S02): C449-C506

    [32]

    Stöffler D and Ryder G. 2001. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Science Reviews, 96(1-4): 9-54

    [33]

    Stöffler D, Ryder G, Ivanov BA et al. 2006. Cratering history and lunar chronology. Reviews in Mineralogy and Geochemistry, 60(1): 519-596

    [34]

    Turcotte DL and Schubert G. 1982. Geodynamics: Application of Continuum Physics to Geological Problems. New York: Cambridge University Press

    [35]

    Wang L, Ding XZ, Han TL et al. 2015. The digital geological mapping and geological and geomorphic features of Tycho crater of the Moon. Earth Science Frontiers, 22(2): 251-262 (in Chinese with English abstract)

    [36]

    Wilhelms DE. 1970. Summary of Lunar Stratigraphy: Telescopic Observations. Washington DC: US Government Printing Office

    [37]

    Wilhelms DE, McCauley JF and Trask NJ. 1987. The Geologic History of the Moon. Washington DC: US Government Printing Office

    [38]

    Xiao L, Zhu P, Fang G et al. 2015. A young multilayered terrane of the northern Mare Imbrium revealed by Chang'E-3 mission. Science, 347(6227): 1226-1229

    [39]

    Xiao ZY. 2013. Comparison between Copernican-aged geological activity on the moon and Kuiperian-aged geological activity on mercury. Ph. D. Dissertation. Beijing: China University of Geosciences, 62-88 (in Chinese)

    [40]

    Xiao ZY, Zeng ZX, Xiao L et al. 2013. The small stretch and compressional tectonics on continuous sputtering blanket of the Copernicus crater of the Moon: A global contraction and the local stress counter. Geological Journal of China Universities, 19(Suppl.): 626(in Chinese)

    [41]

    Young RA. 1977. The lunar impact flux, radiometric age correlation, and dating of specific lunar features. In: Proceedings of the 8th Lunar Science Conference. New York: Pergamon Press, 3457-3473

    [42]

    Zhang J, Yang W, Hu S et al. 2015. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proceedings of the National Academy of Sciences of the United States of America, 112(17): 5342-5347

    [43]

    丁孝忠, 王梁, 韩坤英等. 2014. 基于ArcGIS的月球数字地质填图: 以月球北极地区为例. 地学前缘, 21(6): 19-30

    [44]

    欧阳自远. 2005. 月球科学概论. 北京: 中国宇航出版社, 1-362

    [45]

    王梁, 丁孝忠, 韩同林等. 2015. 月球第谷撞击坑区域数字地质填图及地质地貌特征. 地学前缘, 22(2): 251-262

    [46]

    肖智勇. 2013. 月球表面哥白尼纪与水星表面柯伊伯纪的地质活动对比研究. 博士学位论文. 北京: 中国地质大学, 62-88

    [47]

    肖智勇, 曾佐勋, 肖龙等. 2013. 月球哥白尼撞击坑连续溅射毯上的小型拉伸与挤压构造: 全球收缩与局部应力的抗衡. 高校地质学报, 19(增刊): 626

  • 加载中
计量
  • 文章访问数:  6390
  • PDF下载数:  7302
  • 施引文献:  0
出版历程
收稿日期:  2015-06-08
修回日期:  2015-10-01
刊出日期:  2016-01-31

目录