嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演

凌宗成, 张江, 刘建忠, 李勃, 武中臣, 倪宇恒, 孙灵芝, 陈剑. 嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演[J]. 岩石学报, 2016, 32(1): 87-98.
引用本文: 凌宗成, 张江, 刘建忠, 李勃, 武中臣, 倪宇恒, 孙灵芝, 陈剑. 嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演[J]. 岩石学报, 2016, 32(1): 87-98.
LING ZongCheng, ZHANG Jiang, LIU JianZhong, LI Bo, WU ZhongChen, NI YuHeng, SUN LingZhi, CHEN Jian. Lunar global FeO and TiO2 mapping based on the recalibrated Chang'E-1 IIM dataset[J]. Acta Petrologica Sinica, 2016, 32(1): 87-98.
Citation: LING ZongCheng, ZHANG Jiang, LIU JianZhong, LI Bo, WU ZhongChen, NI YuHeng, SUN LingZhi, CHEN Jian. Lunar global FeO and TiO2 mapping based on the recalibrated Chang'E-1 IIM dataset[J]. Acta Petrologica Sinica, 2016, 32(1): 87-98.

嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演

  • 基金项目:

    本文受国家自然科学基金项目(41490634、41473065、U1231103、41373068)、科技部基础性工作专项(2015FY210500)、山东省自然科学基金项目(JQ201511、ZR2015DQ001)、中国科学院重点部署项目(KGZD-EW-603)、中国科学院月球与深空探测重点实验室开放基金项目和山东大学(威海)青年学者未来计划(2015WHWLJH14)联合资助.

Lunar global FeO and TiO2 mapping based on the recalibrated Chang'E-1 IIM dataset

  • 月球表面的元素和物质成分分布是理解月球成岩与地质演化历史的重要线索。嫦娥一号干涉成像光谱仪(IIM)是我国首台月球探测成像光谱仪器,其获得的大量月球高光谱数据已成为我国未来探测月球成分与地质演化研究的宝贵基础数据。本文利用探月工程地面应用系统发布的IIM B版本2C级数据,开发出一套数据再定标流程,获得了较为可靠的月表相对反射率数据。我们在新校正数据的基础上开展月球表面FeO、TiO2的反演建模,获得了全月FeO和TiO2分布图,这些图件是进行月球地质填图的基础。校正数据反演的FeO和TiO2分布与前人对Clementine UVVIS数据的反演结果相近,表明干涉成像光谱仪数据具有较大的应用潜力。高地的低铁岩石成分(一般小于8%)佐证了月球月壳形成的过程中的岩浆洋分异假说,而月海玄武岩的TiO2成分变化范围较大(0~13%)则表明月海玄武岩来源于不同的月幔源区。根据嫦娥一号干涉成像光谱仪全月FeO分布图,可将月球表面物质类型总体划分为高地斜长岩和月海玄武岩,而根据TiO2分布可以进一步将月海玄武岩划分为5种不同钛含量的玄武岩岩石类型。FeO和TiO2在全月范围内的分布表明Apollo和Luna返回的月球样品不能够代表全月范围内的矿物成分多样性,月球岩浆演化历史比前人认为的要复杂。未来月球样品返回任务(如嫦娥五号)如能赴这些特殊地区进行取样,将很有可能返回重要的月球科学研究发现和成果。
  • 加载中
  • [1]

    Adams JB and McCord TB. 1970. Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Geochimica et Cosmochimica Acta, (Suppl.1): 1937-1945

    [2]

    Blewett DT, Lucey PG, Hawke BR et al. 1997. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research: Planets (1991~2012), 102(E7): 16319-16325

    [3]

    Burns RG. 1993. Mineralogical Applications of Crystal Field Theory. 2nd Edition. Cambridge: Cambridge University Press

    [4]

    Cahill JT, Lucey PG, Gillis JJ et al. 2004. Verification of quality and compatibility for the newly calibrated Clementine NIR data set. In: 35th Lunar and Planetary Science Conference. Houston, Texas: 1469

    [5]

    Elardo SM, Shearer Jr CK, Fagan AL et al. 2014. The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science, 49(2): 261-291

    [6]

    Giguere TA, Taylor GJ, Hawke BR et al. 2000. The titanium contents of lunar mare basalts. Meteoritics & Planetary Science, 35(1): 193-200

    [7]

    Gillis JJ, Jolliff BL and Elphic RC. 2003. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations. Journal of Geophysical Research: Planets (1991~2012), 108(E2), doi: 10.1029/2001JE001515

    [8]

    Green RO, Pieters CM, Mouroulis P et al. 2011. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, onorbit measurements, science data calibration and initial on-orbit validation. Journal of Geophysical Research, 116(E10), doi: 10.1029/2011JE003797

    [9]

    Heiken G, Vaniman D French BM and Schmitt J. 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge: Cambridge University Press

    [10]

    Hiesinger H, Head JW, Wolf U et al. 2003. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. Journal of Geophysical Research: Planets (1991~2012), 108(E7), doi: 10.1029/2002JE001985

    [11]

    Hu S and Lin YT. 2011. Modified calibration method of the chang'E-1 IIM images. Scientia Sinica (Physics, Mechanics and Astronomy), 41(7): 879-888 (in Chinese)

    [12]

    Jolliff BL, Gillis JJ, Haskin LA et al. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 105(E2): 4197-4216

    [13]

    Le Mouélic S, Langevin Y and Erard S. 1999. A new data reduction approach for the Clementine NIR data set: Application to Aristillus, Aristarchus and Kepler. Journal of Geophysical Research: Planets (1991~2012), 104(E2): 3833-3844

    [14]

    Li CL, Liu JJ, Xin R et al. 2010. The global image of the moon obtained by the Chang'E-1: Data processing and lunar cartography. Science China (Earth Sciences), 53(8): 1091-1102

    [15]

    Li CL. 2013. Photogrammetric processing and lunar global topographic map form the Chang'E-1 3 line-array CCD data. Acta Geodaetica et Cartographica Sinica, 42(6): 853-860, 868 (in Chinese with English abstract)

    [16]

    Ling ZC. 2011. The data processing and science inversion of Chang'E-1 IIM data. Post-Doctor Research Report. Beijing: National Astronomical Observatories, Chinese Academy of Sciences (in Chinese)

    [17]

    Ling ZC, Zhang J, Liu J et al. 2011a. Preliminary results of FeO mapping using Imaging Interferometer data from Chang'E-1. Chinese Science Bulletin, 56(4-5): 376-379

    [18]

    Ling ZC, Zhang J, Liu JZ et al. 2011b. Preliminary results of TiO2 mapping using Imaging Interferometer data from Chang'E-1. Chinese Science Bulletin, 56(20): 2082-2087

    [19]

    Ling ZC, Liu JZ, Zhang J et al. 2014. The lunar rock types as determined by Chang'E-1 IIM data: A case study of Mare Imbrium-Mare Frigoris region (LQ-4). Earth Science Frontiers, 21(6): 107-120 (in Chinese with English abstract)

    [20]

    Liu JZ, Ouyang ZY, Li CL et al. 2013. China national moon exploration progress (2001~2010). Bulletin of Mineralogy, Petrology and Geochemistry, 2(5): 544-551 (in Chinese with English abstract)

    [21]

    Lucey PG, Taylor GJ and Malaret E. 1995. Abundance and distribution of iron on the Moon. Science, 268(5214): 1150-1153

    [22]

    Lucey PG, Blewett DT, Eliason EM et al. 2000. Optimized calibration constants for the Clementine NIR camera. In: 31st Lunar and Planetary Science Conference. Houston, Texas: 1273

    [23]

    Lucey PG, Blewett DT and Jolliff BL. 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research: Planets (1991~2012), 105(E8): 20297-20305

    [24]

    Lucey PG, Korotev RL, Gillis JJ et al. 2006. Understanding the lunar surface and space-moon interactions. Reviews in Mineralogy and Geochemistry, 60(1): 83-219

    [25]

    McCord TB. 1969. Color Differences on the lunar surface. Journal of Geophysical Research, 74(12): 3131-3142

    [26]

    McCord TB, Carette MP, Johnson TV et al. 1972. Lunar spectral types. Journal of Geophysical Research, 77(8): 1349-1359

    [27]

    Neal CR and Taylor LA. 1972. Petrogenesis of mare basalts: A record of lunar volcanism. Geochimica et Cosmochimica Acta, 1992, 56(6): 2177-2211

    [28]

    Nozette S, Rustan P, Pleasance LP et al. 1994. The Clementine mission to the moon: Scientific overview. Science, 266(5192): 1835-1839

    [29]

    Ouyang ZY. 2005. Introductory to Lunar Science. Beijing: China Astronautic Publish House (in Chinese)

    [30]

    Ouyang ZY, Li CL, Zou YL et al. 2010. Primary scientific results of Chang'E-1 lunar mission. Science China (Earth Sciences), 53(11): 1565-1581

    [31]

    Pieters CM and Englert PAJ. 1993. Remote Geochemical Analysis, Elemental and Mineralogical Composition. Cambridge: Cambridge University Press

    [32]

    Pieters CM, Head JW, Sunshine JM et al. 1993. Crustal diversity of the Moon: Compositional analyses of Galileo solid state imaging data. Journal of Geophysical Research: Planets (1991~2012), 98(E9): 17127-17148

    [33]

    Pieters CM. 1999. The moon as a spectral calibration standard enabled by lunar samples: The Clementine example. In: Workshop on New Views of the Moon Ⅱ: Understanding the Moon through the Integration of Diverse Datasets. Flagstaff, Arizona, 1: 8025

    [34]

    Wilcox BB, Lucey PG and Gillis JJ. 2005. Mapping iron in the lunar mare: An improved approach. Journal of Geophysical Research: Planets (1991~2012), 110(E11): E11001, doi: 10.1029/2005JE002512

    [35]

    Wu YZ, Zheng YC, Zou YL et al. 2010a. A preliminary experience in the use of Chang'E-1 IIM data. Planetary and Space Science, 58(14-15): 1922-1931

    [36]

    Wu YZ, Zhang X, Yan BK et al. 2010b. Global absorption center map of the mafic minerals on the Moon as viewed by CE-1 IIM data. Science China Physics, Mechanics and Astronomy, 53(12): 2160-2171

    [37]

    Wu YZ, Xue B, Zhao BC et al. 2012. Global estimates of lunar iron and titanium contents from the Chang'E-1 IIM data. Journal of Geophysical Research: Planets, 117(E2), doi: 10.1029/2011JE003879

    [38]

    Xu T, Blewett TB and Li CL. 2004. Foundamental characteristics of UV-VIS-NIR reflectance spectra and methods of their interpration. Earth and Environment, 32(3-4): 27-33 (in Chinese with English abstract)

    [39]

    Xue B, Yang JF and Zhao BC. 2004. The study of spectral feature of major minerals on the lunar surface. Progress in Geophysics, 19(3): 717-720 (in Chinese with English abstract)

    [40]

    Yan BK, Xiong SQ, Wu YZ et al. 2012. Mapping Lunar global chemical composition from Chang'E-1 IIM data. Planetary and Space Science, 67(1): 119-129

    [41]

    Zhao BC, Yang JF, Chang LY et al. 2009. Optical design and on-orbit performance evaluation of the imaging spectrometer for Chang'E-1 Lunar satellite. Acta Photonica Sinica, 38(3): 479-483 (in Chinese with English abstract)

    [42]

    Zhao BC, Yang JF, Xue B et al. 2010. Calibration of Chang'E-1 satellite interference imaging spectrometer. Acta Photonica Sinica, 39(5): 769-775 (in Chinese with English abstract)

    [43]

    胡森, 林杨挺. 2011. 嫦娥一号IIM数据定标的改进方法. 中国科学(物理学 力学 天文学), 41(7): 879-888

    [44]

    李春来. 2013. 嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图. 测绘学报, 42(6): 853-860, 868

    [45]

    凌宗成. 2011. 嫦娥一号干涉成像光谱仪数据处理与科学反演. 博士后研究工作报告. 北京: 中国科学院国家天文台

    [46]

    凌宗成, 刘建忠, 张江等. 2014. 基于"嫦娥一号"干涉成像光谱仪数据的月球岩石类型填图: 以月球雨海-冷海地区(LQ-4)为例. 地学前缘, 21(6): 107-120

    [47]

    刘建忠, 欧阳自远, 李春来等. 2013. 中国月球探测进展(2001~2010年). 矿物岩石地球化学通报, 32(5): 544-551

    [48]

    欧阳自远. 2005. 月球科学概论. 北京: 中国宇航出版社

    [49]

    胥涛, Blewett DT, 李春来. 2004. 月球紫外-可见-近红外反射光谱的基本特征及解析方法. 地球与环境, 32(3-4): 27-33

    [50]

    薛彬, 杨建峰, 赵葆常. 2004. 月球表面主要矿物反射光谱特性研究. 地球物理学进展, 19(3): 717-720

    [51]

    赵葆常, 杨建峰, 常凌颖等. 2009. 嫦娥一号卫星成像光谱仪光学系统设计与在轨评估. 光子学报, 38(3): 479-483

    [52]

    赵葆常, 杨建峰, 薛彬等. 2010. 嫦娥一号干涉成像光谱仪的定标. 光子学报, 39(5): 769-775

  • 加载中
计量
  • 文章访问数:  5803
  • PDF下载数:  5687
  • 施引文献:  0
出版历程
收稿日期:  2015-06-14
修回日期:  2015-09-20
刊出日期:  2016-01-31

目录