西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲特征的启示

黄德志 高俊 张进富 张德贤 戴塔根 Reiner KLEMD. 西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲特征的启示[J]. 岩石学报, 2006, 22(1): 74-82.
引用本文: 黄德志 高俊 张进富 张德贤 戴塔根 Reiner KLEMD. 西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲特征的启示[J]. 岩石学报, 2006, 22(1): 74-82.
Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: implications for deep fluids flow and the characteristic of subduction[J]. Acta Petrologica Sinica, 2006, 22(1): 74-82.
Citation: Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: implications for deep fluids flow and the characteristic of subduction[J]. Acta Petrologica Sinica, 2006, 22(1): 74-82.

西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲特征的启示

  • 基金项目:

    国家重点基础研究发展规划项目(2001CB409803)研究成果.

Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: implications for deep fluids flow and the characteristic of subduction

  • 位于中国南天山的西天山高压变质带代表了伊犁-中天山与塔里木两个板块间古生代南天山洋的古俯冲混杂岩带.高压变质带内广泛发育高压脉.为探讨古俯冲深部流体来源及运移特点及板块俯冲特征,对高压脉和主岩的全岩及主要的高压变质矿物的氧同位素进行了分析.高压脉的δ18O值变化于+8.28‰与+10.70‰之间,多数在+9.50‰±1范围内.基性变质岩的主岩与高压脉具相似的氧同位素组成,变化于+9.25‰~+10.10‰之间.高压脉和主岩的全岩δ18O值变化不大.高压脉与相邻主岩间、同一高压脉中间与边部间氧同位素组成的变化没有明显的规律,一般变化不大,对于大多数脉-主岩对,变化小于1‰.与全岩完全不同的是,单矿物氧同位素组成显示出很大的变化范围,石英、石榴石、绿辉石的δ18O值分别为+11.40‰~+15.20‰,+3.59‰~+11.60‰和+8.30‰~+13.05‰,多硅白云母和蓝闪石δ18O的变化较小,分别为+10.00‰~+11.10‰和+9.26‰~+9.94‰.榴辉质岩石中高压变质矿物间氧同位素分馏广泛不平衡.全岩氧同位素组成特征表明,俯冲带深部流体主体来自邻近主岩,外来流体对氧同位素贡献有限.单矿物氧同位素广泛不平衡特征可能指示古俯冲带俯冲板片的快速俯冲和折返以及部分外来流体的参与.
  • 加载中
  • [1]

    Agrinier P,Javoy M and Girardeau J.1988. Hydrothermal activity in a peculiar oceanic ridge:Oxygen and hydrogen isotope evidence in the Xigaze (Tibet) ophiliote,China.Chem.Geol.,71:313-335

    [2]

    Barnicoat AC and Cartwright I.1997. The gabbro-eclogite transition:an oxygen isotope and petrography study of west Alpine ophiolites.J.metamorphic Geol.,15:93-104

    [3]

    Barnicoat AC and Cartwright I.1995. Focused fluid flow during subduction:oxygen isotope data from high-pressure ophiolites of the western Alps.Earth Planet.Sci.Lett.,132:53 -61

    [4]

    Bebout GE.1995. The impact of subduction-zone metamorphism on mantle-ocean chemical Cycling.Chem.Geol.,126:191-218

    [5]

    Bebout GE and Barton MD.1989. Fluid-rock interaction and carbon recycling in subduction zones:Evidence from stable isotope systematics in a high-pressure metamorphic complex,Catalina Schist,California.Proc.28th Int.Geol.Conf.,108-109(abstract)

    [6]

    Borthwick J and Harmon RS.1982. A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis.Geochim.Cosmochim.Acta,46:1665-1668

    [7]

    Brunsmann A,Franz G,Erzinger J and Landwehr D.2000. Zoisite-and clinozoisite-segregations in metabasites (Tauern window,Austria) as evidence for high-pressure fluid-rock Interaction.J.Metamorphic Geol.,18:1-21

    [8]

    Brunsmann A,Franz G,Erzinger J,et al.2001. Zoisite-and clinozoisitesegregations in metabasites(Tauern window,Austria) as evidence for high-pressure fluid-rock interaction.J.Metamorphic Geol.,18:1 -21

    [9]

    Cartwright J and Buick IS.2000. Fluid generation,vein formation and degree of fluid-rock interaction during decompression of high-pressure terrane:the Schistes Lustrs,Alpine Corsica,France.J.metamorphic Geol.,18:607 -624

    [10]

    Chan LH,Leeman WP and You GF.1999. Lithium isotopic composition ofcentral American Volcanic Arc Lavas:Implications for modifications of subarc mantle by slab-derived fluids.Chem.Geol.,160:255 -280

    [11]

    Cocker JD,Griffin BJ and Muehlenbachs.1982. Oxygen and carbon isotope evidence for sea-water-hydrothermal alteration of the Macquarie Island ophiolite.Earth Planet.Sci.Lett.,61:112 -122

    [12]

    Dodson MH.1973. Closure temperature in cooling geochronological and petrological system.Contrib.Mineral.Petrol.,40:259-274

    [13]

    Edwards CMH,Morris JD and Thirlwall MF.1993. Separating mantle from slab signature in arc lavas using B/Be and radiogenic isotope systematics.Nature,362:530-533

    [14]

    Emiito White WM and Gopel C.1987. The O,Sr,Nd and Pb isotope geochemistry of MORB.Chem.Geol.,62:157-176

    [15]

    Früh-Green GL,Scambelluri M and Vallis F.2001. O-H isotope ratios of high-pressure ultramafic rocks:Implications for fluid sources and mobility in the subducted hydrous mantle.Contrib.Mineral.Petrol.,141:145-159

    [16]

    Fuü B,Zheng YF,Xiao YL,Li YL,Gong B,Li SG and Sun WD.1998. Geochemical Study of Eclogites and Marbles from Sujiahe in the Western Dabie Mountains.Acta Geologica Sinica,72 (4):323 -339,(in Chinese with English abstract)

    [17]

    Gao J,He GQ and Li MS,et al.1995. The mineralogy,petrology,metamorphic PTDt trajectory and exhumation mechanism of blueschists,South Tianshan,northwestern China.Tectonophysics.250:151-168

    [18]

    Gao J.1997. The discovery of eclogites and its tectonic significance,Southwestern Tianshan.Chinese Bulletin of Sciences,42:737 -740(in Chinese)

    [19]

    Gao J,Li MS,Xiao XC,et al.1998. Paleozoic tectonic evolution of the Tianshan Orogen,northwestern China.Tectonophysics,287:213 -231

    [20]

    Gao J,Klemd R,Zhang LF,Wang ZQ and Xiao XC.1999. P-T path of high-presswre/low temperature rocks and tectonic implications in the western Tianshan Mountains,NW China.J.Metamorphic Geol.,17:621-636

    [21]

    Gao J,Zhang L and Liu S.2000. The 40Ar/39Ar age record of formation and uplift of the blueschists and eclogites in the western Tianshan Mountains.Chinese Science Bulletin 45:1047-1052

    [22]

    Gao J,Klemd R and Liu S.2000. Eclogitization of blueschists by aqueous fluid infiltration.Science in China (D),43 (supplement):144 -155

    [23]

    Gao J and Klemd R.2000. Eclogite occurences in the Southern Tianshan High-Pressure Belt,Xingjiang,Western China.Gondwana Research,3 (1):33-38

    [24]

    Gao J and Klemd R.2001. Primary fluids at the blueschist-to-eclogite transition:Evidence from the Tianshan metasubduction complexes in northwestern China.Contrib.Mineral.Petrol.,142:1-14

    [25]

    Gao J and Klemd R.2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen,NW China:geochemical and age constraints.Lithos,66,1-22

    [26]

    Garlick GD,MacGregor ID and Vogel DE.1971. Oxygen isotope ratios in eclogites from kimberlites.Science,171:1025-1027

    [27]

    Getty SR and Selverstone J.1994. Stable isotope and trace element evidence for restricted fluid migration in 2 GPa eclogites.J.Metamorphic Geol.,12:747-760

    [28]

    Giletti BJ.1986. Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks.Earth Planet.Sci.Lett.,77:218-228

    [29]

    Gregory RT,Criss RE and Taylor Jr HP.1989. Oxygen isotope exchange hydrothermal alteration of igneous rocks and Precambrian iron formations.Chem.Geol.,75:1 -42

    [30]

    Hockstaedter AG,Ryan JG,Luhr JF and Hasenaka T.1996. On B/Be ratios in the Mexican Volcanic Belt.Geochim.Cosmochim.Acta,60:613 -628

    [31]

    Jenkin GRT,Farrow CM,Fallick AE and Higgins D.1994. Oxygen isotope exchange and closure temperatures in cooling rocks.J.Metamorphic Geol.,12:221-235

    [32]

    Jenkin GRT,Linklater C and Fallick AE.1991. Modeling of mineral δ18 O values in an igneous aureole:closed system model predicts apparent open-system δ18 O values.Geology,19:1185-1188

    [33]

    Klemd R,Schroter F,Will TM and Gao J.2002. PT-evolution of glaucophane-clinozosite bearing HP-LT rocks in the western Tianshan orogen,NW China.J.Metamorphic Geol.,20:239 -254

    [34]

    Klemd R,Brocker M,Hacker BR,Gao J,Gans P and Wemmer K.2005. New age constraints on the metamorphic evolution of the highpressure/low-temperature belt in the western Tianshan Mountains,NW China.The Journal of Geology,113:157-168

    [35]

    Lecuyer C and Fourcade S.1991. Oxygen isotope evidence for multi-stage hydrothermal alteration at a fossil slow-spreading center:The Silurian Trinity ophiolite (California,U.S.A.).Chem.Geol.,87:231 -246

    [36]

    Leeman WP,Carr MJ and Morris JD.1994. Boron geochemistry of Central American Volcanic Arc:constraints on the genesis of subduction-related magmas.Geochim.Cosmochim.Acta,58:149 -168

    [37]

    Matthews A.1994. Oxygen isotope geothermometers for metamorphic rocks.J.Metamorphic Geol.,12:211 -219

    [38]

    Mathews A,Goldsmith JR and Clayton RN.1983. Oxygen isotope fractionations involving pyroxenes:the calibration of mineral-pair geothermometers.Geochim.Cosmochim.Acta,47:631 -644

    [39]

    Miller DM,Goldstein SL and Langmuir CH.1994. Cerium/ Lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents.Nature,368:514-520

    [40]

    Miller JA and Cartwright J.2000. Distinguishing between seafloor alteration and fluid flow during subduction using stable isotope geochemistry:examples from Tethyan ophiolites in the western Alps.J.Metamorphic Geol.,18:467-482

    [41]

    Nadeau S,Philippot P and Pineau F.1993. Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism.Earth Planet.Sci.Lett.,114:431-448

    [42]

    Onley JS,Basu AR and Kyser JK.1987. Oxygen isotopes in coexisting garnets,clinopyroxenes and phlogopites of Robert Victor eclogites:implications for petrogenesis and mantle metasomatism.Earth Planet.Sci.Lett.,83:80-84

    [43]

    Peacock SM.1993. Large-scale hydration of lithosphere above subducting slab.Chem.Geol.,108:49-59

    [44]

    Pf(a)nder JA,Jochum KP,Kozakov I,Kroner A and Todt W.2002. Coupled evolution of back-arc and island arc-like mafic crust in the late-Neoproterozoic Agardagh Tes-Chem ophiolite,Central Asia:Evidence from trace element and Sr-Nd-Pb isotope data.Contrib.Mineral.Petrol.,143:154-174

    [45]

    Philippot P.1993. Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments:Constraints on volatile recycling during subduction.Chem.Geol.,108:93-112

    [46]

    Plank T and Langmuir CH.1993. Tracing trace elements from sediment to volcanic output at subduction zones.Nature,362:739-742

    [47]

    Plank T and Langmuir CH.1988. An evaluation of the global variations in the major element chemistry of arc basalts.Earth.Planet.Sci.Lett.,90:349-370

    [48]

    Poli S and Schmidt MW.1995. H2 O transport and release in subduction zones:Experimental constraints on basaltic and andesitic systems.J.Geophys.Res.,100:22299-22314

    [49]

    Ryan JG and Langmuir CH.1993. The systematics of boron abundances in young volcanic rocks.Geochim.Cosmochim.Acta,57:1489 -1498

    [50]

    Turner S and Foden J.2001. U,Th and Ra disequilibria,Sr,Nd and Pb isotope and trace element variations in Sunda arc lavas:Predominance of a subducted sediment component.Contrib.Mineral.Petrol.,142:43-57

    [51]

    Ulmer P and Trommsdorff V.1995. Serpentine stability to mantle depths and subduction-related magmatism.Science,268:858-861

    [52]

    Yui TF,Rumble D and Lo CH.1995. Unusually low δ18O ultrahighpressure metamorphic rocks from the Sulu terrain,eastern China.Geochim.Cosmochim.Acta,59:2859-2864

    [53]

    Zhang LF,Ai YL,Li Q,Li XP,Song SG and Wei CJ.2005. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan,Xinjiang.Acta Petrologica Sinica,21 (4):1029 -1038(in Chinese with English abstract)

    [54]

    Zheng YF.1993a.Calculation of oxygen isotope fractionation in anhydrous silicate minerals.Geochim.Cosmochim.Acta,57:1078-1091

    [55]

    Zheng YF.1993b.Calculation of oxygen isotope fractionation in hydroxylbearing silicates.Earth Planet.Sci.Lett.,120:247-263

    [56]

    Zheng YF and Fu B.1998. Estimation of oxygen diffusivity from anion porosity in minerals.Geochemical Journal,32:71-89

    [57]

    傅斌,郑永飞,肖益林,李一良,龚冰,李曙光,孙卫东.1998.大别山苏家河地区榴辉岩和大理岩的地球化学研究.地质学报,72(4):323-339

    [58]

    高俊.1997.西南天山榴辉岩的发现及其大地构造意义.科学通报,42:737-740

    [59]

    高俊,张立飞,刘圣伟.2000.西天山蓝片岩榴辉岩形成和抬升的40Ar/39Ar年龄记录.科学通报,45:89-94

    [60]

    高俊,Klemd R,刘圣伟.2000.流体渗透下蓝闪石岩的榴辉岩化作用.中国科学,30(增刊):29-37

  • 加载中
计量
  • 文章访问数:  6203
  • PDF下载数:  6397
  • 施引文献:  0
出版历程
收稿日期:  2005-11-11
修回日期:  2005-12-20
刊出日期:  2006-01-31

目录