青藏高原西部赛利普中新世火山岩源区:地球化学及Sr-Nd同位素制约

王保弟,许继峰,张兴国,陈建林,康志强,董彦辉. 青藏高原西部赛利普中新世火山岩源区:地球化学及Sr-Nd同位素制约[J]. 岩石学报, 2008, 24(2).
引用本文: 王保弟,许继峰,张兴国,陈建林,康志强,董彦辉. 青藏高原西部赛利普中新世火山岩源区:地球化学及Sr-Nd同位素制约[J]. 岩石学报, 2008, 24(2).
Petrogenesis of Miocene volcanic rocks in the Sailipu area, Western Tibetan Plateau: Geochemical and Sr-Nd isotopic constraints[J]. Acta Petrologica Sinica, 2008, 24(2).
Citation: Petrogenesis of Miocene volcanic rocks in the Sailipu area, Western Tibetan Plateau: Geochemical and Sr-Nd isotopic constraints[J]. Acta Petrologica Sinica, 2008, 24(2).

青藏高原西部赛利普中新世火山岩源区:地球化学及Sr-Nd同位素制约

  • 基金项目:

    国家重点基础研究发展规划项目 , 中国科学院知识创新工程重要方向性项目 , 国家杰出青年基金项目

Petrogenesis of Miocene volcanic rocks in the Sailipu area, Western Tibetan Plateau: Geochemical and Sr-Nd isotopic constraints

  • 青藏高原拉萨地块西部赛利普地区新生代火山岩依据主量元素可划分为超钾质、钾质和钙碱性系列,主要的岩石类型为粗面安山岩、粗面岩,一个超钾质岩石的40Ar-39Ar年龄为17.58Ma,指示出火山活动为中新世.超钾质、钾质和钙碱性火山岩都显示出富集LREE及LILE(Th、U)、亏损HFSE(Nb、Ta、Ti)的特征.超钾质火山岩具有较高的K2O(6.31%~8.55%)、MgO(6.75%~8.96%)、Cr(270.7×10-6~460.4×10-6)、Ni(142.3×10-6~233.9×10-6)含量,较高的(87Sr/86Sr)i(0.71883~0.72732)和较低的εNd(-14.78~-15.37),指示可能起源于一个前期亏损并经后期俯冲作用改造的富钾的方辉橄榄岩富集地幔源区.钾质火山岩具有比超钾质火山岩低的K2O、MgO、Cr、Ni含量以及高的Ba、Sr含量,初始87Sr/86Sr为0.71553~0.71628,初始143Nd/144Nd为0.51197~0.51198,在空间上与超钾质火山岩共生,可能是前者母岩浆的演化产物.钙碱性火山岩具有较高的Sr(881.7×10-6~1309.2×10-6)、Sr/Y比值(50~108)和较低的Y(12.05×10-6~18.02×10-6),明显亏损重稀土Yb(0.93×10-6~1.30×10-6),类似于典型的埃达克质岩成分特征但相对高钾,并具有相对低的(87Sr/86Sr);(0.70928~0.71374)以及高的εNd(-7.90~-10.91),指示起源于富钾增厚下地壳物质的部分熔融.区域上拉萨地块超钾质岩、钾质岩与N-S向地堑系在空间上共存、时间上相吻合,由此本文认为拉萨地块中新世钾质.超钾质岩和南北向地堑系的形成可能与中新世早期北向俯冲的印度大陆岩石圈断离有关.
  • 加载中
  • [1]

    Arnaud NO, Vidal PH, Tapponier P, Matte PH and Deng WM. 1992. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth and Planetary Science Leters, 111 (2 - 4) : 351 -367

    [2]

    Atherton MP and Pefford N. 1993. Generation of sodium rich magmas from newly underplated basaltic crust. Nature, 362:144 -146

    [3]

    Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134:33 -51

    [4]

    Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Bulletin, 51 (3) : 257 - 268

    [5]

    Chen JL. Xu JF, Kang ZQ and Wang BD. 2006. Origin of the Miocene Bugasi Group volcanic rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petrologica Sinica, 22 ( 3 ) : 585 - 594

    [6]

    Chen JL. Xu JF, Kang ZQ and Wang BD. 2007. Geochemistry and Origin of Miocene volcanic rocks in Caze area, south western Qingha Xizang plateau. Geochimica, 36 ( 5 ) : 437 - 447

    [7]

    Chung SL, Chu MF, Zhang YQ, Xie YQ, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post collisional magmatism. Earth Science Reviews, 68 : 173 - 196

    [8]

    Chung SL, Lo CH and Lee TY. 1998. Diachronous uplift of the Tibetan Plateau starting from 40 Ma ago. Nature, 394:769 -773

    [9]

    Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31 : 1021 - 102

    [10]

    Chung SL. Wang KL, Crawford AJ. Kamenetsky B, Chen CH. Lan CY and Chen CH. 2001. High Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos, 59: 153 - 170

    [11]

    Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Ma ago from a new minimum age for east west extension. Nature, 374:49-52

    [12]

    Conticelli S, Antonio MD, Pinarelli L and Civetta L. 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks : Sr Nd Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology, 74(2-4) : 189 -222

    [13]

    Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: ^39Ar/^40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79:281 -302

    [14]

    Defant MJ and Drummond MS. 1990. Derivation of some modem arc magmas by melting of young subdueted lithosphere. Nature, 347: 662 - 665

    [15]

    Deng WM. 1998. Cenozoic Intraplate Volcanic Rocks in the Northern Qinghai Xizang Plateau. Beijing: Geological Publishing House

    [16]

    Ding L, Kapp P, Yin A, Deng WM and Zhong DL. 2003. Early Tertiary volcanism in the Qiangtang terrane of central Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44:1833 - 1865

    [17]

    Ding L, Yue YH, Cai FL, Xu XX, Zhang QH and Lai QZ. 2006b. ^40Ar/^39 Ar Geochronology, Geochemical and Sr Nd O Isotopic Characteristics of the High Mg Ultrapotassic Rocks in Lhasa Block of Tibet : Implications in the Onset Time and Depth of NS Striking Rift System. Acta Geologica Sinica, 80 (9) : 252 - 1261

    [18]

    Ding L, Paul Kapp, Yue YH and Lai QZ. 2006a. Postcollisional calc alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters, 254 ( 1 - 2 ) : 28 -38

    [19]

    Ding L, Zhang JJ and Zhou Y. 1999. Tectonic implication on the lithosphere evolution of the Tibetan Plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet. Acta Petrologica Sinica, 15 (3) : 408 -421

    [20]

    England P and Houseman G. 1989. Extension during continental convergence, with application to the Tibetan plateau. Journal of Geophysical Research, 94(B12) : 17561 - 17579

    [21]

    Foley sF, Venturelli G, Green DH and Toscani L. 1987. The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci. Rev. , 24 : 81 - 134

    [22]

    Foley SF. 1992. Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos, 28:187-204

    [23]

    Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48 : 237 - 262

    [24]

    Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004a. Origin of adakitic intrusives generated during mid Miocene east west extension in southern Tibet. Earth and Planetary Science Letters, 220:139 - 155

    [25]

    Hou ZQ, Meng XJ, Qu XM and Gao YF. 2005. Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt: Constrains from rock phase and deep melting process. Mineral Deposits, 24 (2) : 108 -121

    [26]

    Hou ZQ, Gao YF, Meng XJ, Qu XM and Huang W. 2004b. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20 ( 2 ) : 239 - 248

    [27]

    Hou ZQ, Zhao ZD, Gao YF, Yang ZM and Jiang W. 2006. Tearing and dischronal subduction of the Indian continental slab : Evidence from Cenozoic Gangdese volcano magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761 -774

    [28]

    Houseman G and England P. 1993. Crustal thickening versus lateral expulsion in the Indian Asian continental collision. Journal of Geophysical Research, 98 : 12233 - 12249

    [29]

    Johannsen A. 1939. A Descriptive Petrography of Igneous Rocks, Vol. 4 (2nd ed. ). Chicago : University of Chicago Press, 523

    [30]

    Jiang YS, Zhou YY, Wang MG, Xie YX, Li JB and Peng B. 2003. Characterristics and geoliogical significance of Quaternary volcanic rocks in the central segment of the Gangdise area. Geological Bulletin of China, 22 ( 1 ) : 16 - 20

    [31]

    Li XH, Liu Y, Tu XL, Hu GQ and Zeng W. 2002. Precise determination of chemical composition in silicate rocks using ICP AES and ICP MS: Acomparative study of sample digestion techniques of alkali fusion and aciddissolution. Geochimica, 31 (3) : 289 - 294

    [32]

    Li JZ, Zhang YY and Luo HY. 1992. A research on petrological characters and genesis of the Cenozoic volcanic rocks in the Yangying village geothermal field, Dangxiong, Tibet, China. Geoscience Journal of Graduate School of China University of Geosciences, 6 (1) : 96- 109

    [33]

    Liang XR, Wei GJ and Li XH. 2002. Rapid and precise determination of Nd isotope using MC ICPMS. Petrologic and Mineral Analyses, 21 (4) : 247 -251

    [34]

    Liao SP, Chen ZH, Luo XC and Zou AJ. 2002. Discovery of leueite phonolite in the Tangra Yumco area, Tibet and its geological significance. Geological Buletin of China, 21 ( 11 ) : 735 - 73

    [35]

    Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise delermination of 40 trace elements in rock samples using ICP MS. Geochimica, (6) : 552 -558

    [36]

    Ma RZ, Liu DZ, Tao XF, Shi H and Hu XW. 2002. Discovery of Tertiary potassium rich magmatic rocks in the Coqen area, Tibet. Geological Bulletin of China, 21 (11 ) : 728 -731

    [37]

    Miller C, Schuster R, Klotzli U, Mair V, Frank W and Purtseheller F. 1999. Post collisional potassic and ultra-potassic magmatism in SW Tibet: Geochemical, Sr, Nd, Pb, O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 83: 5361 - 5375

    [38]

    Mo XX, Hou ZQ, Dong GC, Qu XM and Yang ZM. 2006a. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96 : 225 - 242

    [39]

    Mo XX, Zhao ZD, Depaolo DJ, Zhou S and Dong GC. 2006b. Three types of collisional and post comsional magmatism in the Lhasa block. Tibet and implications for India intra continental subduction and mineralization: Evidence from Sr Nd isotopes. Acta Petrologica Sinica, 22 (4) : 795 -803

    [40]

    Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India. Asia collision. Earth Science Frontiers, 10:135 -148

    [41]

    Nelson DR. 1992. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis. Lithos, 28 : 403 - 420

    [42]

    Nelson DR, McCulloch MT and Sun SS. 1986. The origins of ultrapotassic rocks as inferred from St, Nd and Pb isotopes. Geochim. Cosmochim. Acta, 50:231 -245

    [43]

    Owens TJ and Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387:37 -43

    [44]

    Qu XM, Hou ZQ and Huang W. 2001. Is the Gangdese porphyry copper belt the Yulong porphy copper belt in Tibetan plateau? Mineral Deposits, 20 : 355 - 366

    [45]

    Qiu HN. 2006. Construction and development of new Ar Ar laboratories in China: Insight from GV-5400-Ar-Ar laboratory in Guangzhou Instute of Geochemistry Chinese Academy of Sciences. Geochimica, 35(2) 133 -140

    [46]

    Rudnick RL and Fountain DM. 1995. Nature and composition of the continetal crust: A lower crustal perspective. Reviews of Geophysics, 33 (3) : 267 - 309

    [47]

    Sun CG, Zhao ZD, Mo XX, Zhu DC, Dong GC, Zhou S, Dong X and Xie GG. 2007. Geochemistry and Origin of the Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau. Acta Petrologica Sinica, 23 ( 11 ) : 2715 - 2726

    [48]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for the mantle composition and processes. In: Saunders AD and Norry MJ(eds. ). Magmatism in Ocean Basins. Geol. Soc. London Spec. Pub. , 42:313 -345

    [49]

    Tapponnier P, Xu Z and Roger F. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294:1671 -1677

    [50]

    Tibet Bureau of Geology and Minerals Resources. 1993. The field Geological Records of Tibet. Beijing: Geiological Publishing House, 235 - 238

    [51]

    Turner S, Arnaud NO, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post collision, shoshonitic volcanism on the Tibetan plateau, implications for convective thinning of the lithosphere and source of ocean island basahs. Journal of Petrology, 37:45 -71

    [52]

    Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S and Van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364:50-53

    [53]

    Wang Q, MeDcermott Frank, Xu JF, Bellon Herve and Zhu YT. 2005. Cenozoic K rich adakitic volcanic rocks in the Hohxil area northern Tibet : Lower crustal melting in an intracontinental setting. Geology, 33 : 465 -468

    [54]

    Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ and Xie GH. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo Asian collision zone. Earth Planet. Sci. Lett., 188:123-133

    [55]

    Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east west extension and its relationship to post collisional volcanism. Geology, 29 : 339 - 342

    [56]

    Williams H, Turner S, Pearce JA, Kelley SP and Harris BW. 2004. Nature of the source regions for post collisional, potassic magmatism in Southern and Northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology, 45 : 555 - 607

    [57]

    Xiong XL, Li XH, Xu JF, Li WX, Zhao ZH, Wang Q and Chen XM. 2003. Extremely high Na adakite like magmas derived from alkali rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37:233 - 252

    [58]

    Xu JF, Shinjio R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology, 32 : 1111 -1114

    [59]

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan Tibetan orogen. Annu. Rev. Earth and Planetary Science Letters, 28:211 -280

    [60]

    Yin A, Kapp PA, Murphy MA, Manning CE, Harrison TM, Grove M. , Ding L, Deng XG, Wu CM. 1999. Significant late Neogene east west extension in northern Tibet. Geology, 27:787 -790

  • 加载中
计量
  • 文章访问数:  7149
  • PDF下载数:  10185
  • 施引文献:  0
出版历程
刊出日期:  2008-02-29

目录