吉南地区古元古代双岔巨斑状花岗岩成因及其构造意义:岩石学、年代学、地球化学和Sr-Nd-Hf同位素证据

杨明春, 陈斌, 闫聪. 吉南地区古元古代双岔巨斑状花岗岩成因及其构造意义:岩石学、年代学、地球化学和Sr-Nd-Hf同位素证据[J]. 岩石学报, 2015, 31(6): 1573-1588.
引用本文: 杨明春, 陈斌, 闫聪. 吉南地区古元古代双岔巨斑状花岗岩成因及其构造意义:岩石学、年代学、地球化学和Sr-Nd-Hf同位素证据[J]. 岩石学报, 2015, 31(6): 1573-1588.
YANG MingChun, CHEN Bin, YAN Cong. Petrological, geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Shuangcha Paleoproterozoic megaporphyritic granite in the southern Jilin Province: Tectonic implications[J]. Acta Petrologica Sinica, 2015, 31(6): 1573-1588.
Citation: YANG MingChun, CHEN Bin, YAN Cong. Petrological, geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Shuangcha Paleoproterozoic megaporphyritic granite in the southern Jilin Province: Tectonic implications[J]. Acta Petrologica Sinica, 2015, 31(6): 1573-1588.

吉南地区古元古代双岔巨斑状花岗岩成因及其构造意义:岩石学、年代学、地球化学和Sr-Nd-Hf同位素证据

  • 基金项目:

    本文受国家973项目(2012CB416603)资助.

详细信息

Petrological, geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Shuangcha Paleoproterozoic megaporphyritic granite in the southern Jilin Province: Tectonic implications

More Information
  • 双岔岩体位于华北克拉通东部陆块辽吉活动带内,岩性主要为巨斑状石榴石黑云母二长花岗岩。LA-ICP-MS锆石U-Pb年代学研究表明该岩体形成于1890±21Ma。岩石A/CNK>1.1属于强过铝质岩石,CaO/Na2O>0.3,微量元素显示Nb、Ta、Sr、Ti、P的亏损,指示与弧岩浆的亲缘性。全岩同位素特征是:εNd(t)=-4.7~-4.1,ISr值介于0.7050~0.7110,εHf(t)值变化范围为-3.5~2.2,与~2.17Ga条痕状花岗岩和变粒岩-浅粒岩在1890Ma时的同位素组成大致吻合,指示其源岩应主要为成熟度较低的变质砂岩,主要源区为条痕状花岗岩和变粒岩-浅粒岩。双岔花岗岩具有较低的SiO2含量(T+MgO+TiO2含量(除SC-1外都大于4%),较低的Sr/Y和(La/Yb)N比值及较高的Rb/Sr比值以及明显的Eu负异常,说明源岩可能有部分变质玄武岩卷入。Nd同位素模拟结果显示双岔巨斑状花岗岩的源岩中可有20%~30%的变质玄武岩。部分样品的Rb/Sr、Rb/Ba比值特征与泥质原岩相似,显示源区也有少量的泥质岩。岩石低的Al2O3/TiO2比值及变质熔融残余的石榴石和夕线石,说明岩浆形成于高温中压环境,上涌的软流圈加热地壳使源岩发生部分熔融,是辽吉活动带由挤压向伸展转换的产物,标志着辽吉带古元古代造山作用的结束。
  • 加载中
  • [1]

    Altherr R, Lugovic' B, Meyer HP and Majer V. 1995. Early Miocene post-collisional calc-alkaline magmatism along the easternmost segment of the Periadriatic fault system (Slovenia and Croatia). Mineralogy and Petrology, 54(3-4): 225-247

    [2]

    Ayres M and Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139(1-4): 249-269

    [3]

    Bai J. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Plateform. Beijing: Geological Publishing House, 47-89 (in Chinese)

    [4]

    Bai J and Dai FY. 1998. Precambrian Crustal Evolution of China. Beijing: Geological Publishing House, 15-86 (in Chinese)

    [5]

    Bellieni G, Cavazzini G, Fioretti AM, Peccerillo A and Zant-Edeschi P. 1996. The Cima di Vila (Zinsnock) intrusion, Eastern Alps: Evidence for crustal melting, acid-mafic magma mingling and wall-rock fluid effects. Mineralogy and Petrology, 56(1-2): 125-146

    [6]

    Cai JH, Yan GH, Mu BL, Xu BL, Shao HX and Xu RH. 2002. U-Pb and Sm-Nd isotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance. Acta Petrologica Sinica, 18(3): 349-354 (in Chinese with English abstract)

    [7]

    Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan fold belt. Earth Sciences, 83(1-2): 1-26

    [8]

    Chen B, John BM, Arakawa Y and Zhai MG. 2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: Elemental and Sr-Nd-Pb isotopic constrains. Contributions to Mineralogy and Petrology, 148(4): 489-501

    [9]

    Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18

    [10]

    Deng JF, Luo ZH, Su SG et al. 2004. Petrogenesis, Tectonic Environment and Mineralization. Beijing: Geological Publishing House, 85-122 (in Chinese)

    [11]

    Eby GN. 1992. The chemical subdivion of the A-type granitoids: Petrogenesis and tectonic implications. Geology, 20(7): 641-644

    [12]

    Elhlou S, Belousova E, Griffin WL et al. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70(18): A158

    [13]

    Emmermann R. 1977. A petrogenetic model for the origin and evolution of the Hercynian granite series of the Schwarzwald. Neues Jahrbuch für Mineralogie-Abhandlungen, 128: 219-253

    [14]

    Faure MW, Lin W, Monié P and Bruguier O. 2004. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (Northeast China). Terra Nova, 16(2): 75-80

    [15]

    Finger F, Roberts MP, Haunschmid B, Schermaier A and Steyrer HP. 1997. Variscan granitoids of central Europe: Their typology, potential sources and tectonothermal relations. Mineralogy and Petrology, 61(1-4): 67-96

    [16]

    Frasl G and Finger F. 1991. Geologisch-petrographische excursion in denosterreichischen teil des sudbohmischen batholiths. European Journal of Mineralogy, 3: 23-40

    [17]

    Guo JH, Sun M, Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629-642

    [18]

    Hall A. 1972. New data on the composition of Caledonian granites. Mineralogical Magazine, 38: 847-862

    [19]

    Happala I and Ramo OT. 1992. Tectonic setting and origin of the Proterozoic rapakivi granite of southern Fennoscandia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 165-171

    [20]

    Happala I and Ramo OT. 1999. Rapakivi granite and rocks: An introduction. Precambrian Research, 95(1-2): 1-7

    [21]

    Harmon RS, Halliday AN, Clayburn JAP and Stephens WE. 1984. Chemical and isotopic systematics of the Caledonian intrusions of Scotland and Northern England: A guide to magma source region and magma-crust interaction. Philosophical Transactions of the Royal Society, 310(1514): 709-742

    [22]

    Hao DF. 2004. Petrogenesis of the Paleoproterozoic granite in Liao-Ji area and the crustal evolution. Master Degree Thesis. Qingdao: Ocean University of China, 20-37 (in Chinese with English summary)

    [23]

    Hao DF, Li SZ, Zhao GC, Sun M, Han ZZ and Zhao GT. 2004. Origin and its constrain to tectonic evolution of Paleoterozoic granitoids in the eastern Liaoning and Jilin Province, North China. Acta Petrologica Sinica, 20(6): 1409-1416 (in Chinese with English abstract)

    [24]

    Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. London: Geological Society, London, Special Publications, 19(1): 67-81

    [25]

    He YK, Wu TR, Luo HL and Zhang W. 2010. Late Archean continent-continent collision event of middle segment of north margin of North China Plate: Evidence from S-type granite of Hejiao area. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 571-580 (in Chinese with English abstract)

    [26]

    Heal YB, Collins WJ and Richards SW. 2004. A hybrid origin for Lachlan S-type granites: The Murrumbidgee batholith example. Lithos, 78(1-2): 197-216

    [27]

    Holtz F and Johannes W. 1991. Genesis of peraluminous granites: I. Experimental investigation of melt compositions at 3 and 5kb and various H2O activities. Journal of Petrology, 32(5): 935-958

    [28]

    Hou GT, Li JH, Liu YL and Qian XL. 2005. Paleoproterozoic stretch event of North China Craton: Aulacogen and dike swarm. Progress in Natural Science, 15(11): 1366-1373 (in Chinese with English)

    [29]

    Jahn BM, Wu FY and Hong DW. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from the east-central Asia. Journal of Earth System Science, 109(1): 5-20

    [30]

    Jiang CC. 1984. A review of the precambrian stratigraphic division and correlation of eastern parts of Liaoning and Jilin. Bulletin of the Chinese Academy of Geological Sciences, (9): 157-167 (in Chinese with English abstract)

    [31]

    Langmuir CH, Vocke RD, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392

    [32]

    Li SZ, Yang ZS, Liu YJ and Liu JL. 1997. Emplacement model of Palaeoproterozoic early-granite in the Jiao-Liao-Ji area and its relation to the uplift bedding delamination structural series. Acta Petrologica Sinica, 13(2): 189-202 (in Chinese with English abstract)

    [33]

    Li SZ, Yang ZS and Liu YJ. 1998. Stratification of metamorphic belts and its genesis in the Liaohe Group. Chinese Science Bulletin, 43(5): 430-434

    [34]

    Li SZ, Han ZZ, Liu YJ, Yang ZS and Ma R. 2001. Regional metamorphism of the Liaohe Group: Implications for continental dynamics. Geological Review, 47(1): 9-18 (in Chinese with English abstract)

    [35]

    Li SZ, Hao DF, Han ZZ, Zhao GC and Sun M. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao Massif. Acta Geologica Sinica, 77(3): 328-340 (in Chinese with English abstract)

    [36]

    Li SZ, Zhao GC, Sun M, Han ZZ, Hao DF, Luo Y and Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe Group in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659-674

    [37]

    Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT and Hao DF. 2006. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9: 198-208

    [38]

    Li SZ and Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16

    [39]

    Li SZ, Zhao GC, Santosh M, Liu X, Lai LM, Suo YH, Song MC and Wang PC. 2012. Structural evolution of the Jiaobei Massif in the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59-73

    [40]

    Li Z and Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoicmeta-basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research, 255: 653-667

    [41]

    Litvinovsky BA, Steele IM and Wickhan SM. 2000. Silicic magmaformation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25kbar. Journal of Petrology, 41(5): 717-737

    [42]

    Liu JH, Liu FL, Liu PH, Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943-960 (in Chinese with English abstract)

    [43]

    Liu YJ and Li SZ. 1996. Paleoproterozoic granite in Haicheng-Dashiqiao-Jidong, Liaoning Province. Liaoning Geology, 13(1): 10-18 (in Chinese)

    [44]

    Lu LZ, Xu XC and Liu FL. 1996. Early Precambrian Khondalites Series in North China. Changchun: Changchun Press, 1-276 (in Chinese)

    [45]

    Lu XP. 2004. Paleoproterozoic Tectonic and magmatic events in Tonghua area. Ph. D. Dissertation. Changchun: Jilin University, 29-94 (in Chinese)

    [46]

    Lu XP, Wu FY, Guo JH and Yin CJ. 2005. Late Paleoproterozoic granitc magmatism and crustal evolution in the Tonghua region, Northeast China. Acta Petrologica Sinica, 21(3): 721-736 (in Chinese with English abstract)

    [47]

    Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM and Zhang XO. 2006. Zircon U-Pb geochronological constraint on the Paleoproterozoic crustal evolution of the Eastern Block of the North China Craton. Precambrian Research, 146(3-4): 138-164

    [48]

    Luo Y, Sun M, Zhao GC, Li SZ, Ye K and Xia XP. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3-4): 349-371

    [49]

    Luo Y, Sun M, Zhao GC, Ayers JC, Li SZ, Xia XP and Zhang JH. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163(3-4): 279-306

    [50]

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

    [51]

    Meng E, Liu FL, Liu JH and Shi JR. 2012. Geochemical characteristics of the Changhai granitic gneisses in Southeast Liaoning Province, NE China: Implications for its protolith property and formed tectonic setting. Acta Petrologica Sinica, 28(9): 2793-2806 (in Chinese with English abstract)

    [52]

    Meng E, Liu FL, Liu PH, Liu CH, Yang H, Wang F, Shi JR and Cai J. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-maficrocks from central Liaodong Peninsula, Northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry. Precambrian Research, 247: 92-109

    [53]

    O'Brien C, Plant JA, Simpson PR and Tarney J. 1985. The geochemistry, metasomatism and petrogenesis of the granites of the English Lake District. Journal of the Geological Society, 142(6): 1139-1157

    [54]

    Pamic J, Lanphere M and Belak M. 1996. Hercynian I-type and S-type granitoids from the Slavonian Mountains (southern Pannonian Basin, northern Croatia). Neues Jahrbuch für Mineralogie-Abhandlungen, 171: 155-186

    [55]

    Patiño Douce AE and Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218

    [56]

    Patiño Douce AE and Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology, 36(3): 707-738

    [57]

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 525-548

    [58]

    Peng QM and Palmer MR. 1995. The Palaeoproterozoic boron deposits in eastern Liaoning, China: A metamorphosed evaporite. Precambrian Research, 72(3-4): 185-197

    [59]

    Pitcher WS. 1982. Granite type and tectonic environment. In: Hus KJ (ed.). Mountain Building Processes. London: Academic Press, 19-40

    [60]

    Pupin JP. 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73(3): 207-220

    [61]

    Qin Y. 2013. Geochronology constrains on the tectonic evolution of Jiao-Liao-Ji Paloeproterozoic rift belt. Ph. D. Dissertation. Changchun: Jilin University, 23-132 (in Chinese)

    [62]

    Ramo OT and Haapala I. 1996. Rapakivi granite magmatism: A globle review with emphasis on petrogenesis. In: Demaiffe D (ed.). Petrology and Geo-chemistry of Magmatic Suites of Rock in the Continental and Oceanic Crusts. A volume dedicated to Professor Jean Michot. University Libre de Bruxelles, Royal Museum for Central Africa (Tervuren), 177-200

    [63]

    Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB and Chu ZY. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract)

    [64]

    Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266

    [65]

    Santosh M, Tsunogae T, Li JH and Liu LJ. 2007a. Discovery of sapphirinebearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285

    [66]

    Santosh M, Wilde SA and Li JH. 2007b. Timing of Paleoproterozoic ultrahigh temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196

    [67]

    Schärer U, Xu RH and Allègre CJ. 1986. U-Th-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters, 77(1): 35-48

    [68]

    Skjerlie KP and Johnston AD. 1996. Vapour-absent melting from 10 to 20kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol., 37(3): 661-691

    [69]

    Song SG, Su L, Li XH, Zhang GB, Niu YL and Zhang LF. 2010. Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Research, 183(4): 805-816

    [70]

    Strong DF and Hanmer SK. 1981. The leucogranites of southern Brittany: Origin by faulting, frictional heating, fluid flux and fractional melting. The Canadian Mineralogist, 19: 163-176

    [71]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [72]

    Sun M, Armstrong RL, Lambert RSJ et al. 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning Province, China. Precambrian Research, 62(1-2): 171-190

    [73]

    Sweetman TM. 1987. The geochemistry of the Blackstairs unit of the Leinster granite, Ireland. Journal of the Geological Society, 144(6): 971-984

    [74]

    Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44

    [75]

    Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M and Li SZ. 2011. SHRIMP U-Pb zircon ages of high-pressure mafic and pelitic granulites and associated rocks in the Jiaobei massif: Constraints on the metamorphic ages of the Paleoproterozoic Jiao-Liao-Ji Belt in the North China Craton. Gondwana Research, 19(1): 150-162

    [76]

    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71

    [77]

    Venturelli G, Thorpe RS, Dal Piaz GV, Del Moro A and Potts PJ. 1984. Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 86(3): 209-220

    [78]

    Villaros A, Stevens G and Buick IS. 2006. Origins of the S-type cape granites (South Africa). Geochimica et Cosmochimica Acta, 70(S18): A673

    [79]

    Visona D and Zirpoli G. 1984. The Moschumandl acidic body (Iseltal, Austria). Neues Jahrbuch für Mineralogie-Abhandlungen, 9: 413-423

    [80]

    von Blanckenburg F. 1992. Combined high-precision chronometry and geochemical tracing using accessory minerals: Applied to the Central-Alpine Bergell intrusion (central Europe). Chemical Geology, 100(1-2): 19-40

    [81]

    Vorma A. 1976. On the petrochemistry of rapakivi granite with special reference to the Laitila massif, southwestern Finland. Geological Survey of Finland Bulletin, 285: 98

    [82]

    Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271

    [83]

    Wang XX, Wang T, Happala I and Lu XX. 2005. Genesis of mafic enclaves from rapakivi-textured granites in the Qinling and its petrological significance: Evidence of elements and Nd, Sr isotopes. Acta Petrologica Sinca, 21(3): 935-946 (in Chinese with English abstract)

    [84]

    Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304

    [85]

    Wickham SM. 1987. Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: The Trois Seigneurs Massif, Pyrenees, France. Journal of Petrology, 28(1): 127-169

    [86]

    Wu YB and Zheng YF. 2004. Zircon genetic mineralogy research and interpretation of U-Pb age restriction. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese)

    [87]

    Xia XP, Sun M, Zhao GC and Luo Y. 2006. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212

    [88]

    Xu BL, Yan GH, Mou BL, Tan LK, He ZF, Qiao GS and Zhang RH. 1998. Rb-Sr age and it's tectonic significance of the Kuangdonggou alkali-syenite in Gaixian, Liaoning Province. Chinese Science Bulletin, 43(17): 1885-1887 (in Chinese)

    [89]

    Yan GH, Cai JH, Ren KX, He GQ, Mu BL, Xu BL, Li FT and Yang B. 2007. Intraplate extensional magmatism of North China Craton and break-up of three supercontinents and their deep dynamics. Geological Journal of China Universities, 13(2): 161-174 (in Chinese with English abstract)

    [90]

    Yang JH, Wu FY, Xie LW and Liu XM. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, east North China Craton: Constrains from in-situ zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica, 23(2): 263-276 (in Chinese with English abstract)

    [91]

    Yin A and Nie SY. 1996. A phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. New York: Cambridge University Press, 285-442

    [92]

    Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton: Link withsecular changes in the evolving Earth. Gondwana Research, 24(1): 275-297

    [93]

    Zhang QS and Yang ZS. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, 218-450 (in Chinese)

    [94]

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science, 302(3): 191-226

    [95]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [96]

    Zhao GC, Cao L, Simon SW, Sun M, Choe WJ and Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251(3-4): 365-379

    [97]

    Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76

    [98]

    Zhao HD, Liu Y, Deng JF, Xiao QH, Ma LL and Yang YJ. 2009. Characteristics and significances of rapakivi in Yichun area of Xiaoxinganling, Heilongjiang Province. Geology in China, 36(3): 658-668 (in Chinese with English abstract)

    [99]

    Zhong CT, Deng JF, Wan YS, Mao DB and Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585-600 (in Chinese with English abstract)

    [100]

    Zhou XW and Wei CJ. 2005. Denotative significance of in-situ composition of garnet and biotite in the high-temperature metamorphic pelitic rocks. Progress in Natural Science, 15(11): 1389-1395 (in Chinese)

    [101]

    白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社, 47-89

    [102]

    白瑾, 戴凤岩. 1998. 中国前寒武纪地壳演化. 北京: 地质出版社, 15-86

    [103]

    蔡剑辉, 阎国翰, 牟保磊, 许保良, 邵宏翔, 许荣华. 2002. 辽宁盖县梁屯-矿洞沟碱性正长岩杂岩体的U-Pb和Sm-Nd年龄及其地质意义. 岩石学报, 18(3): 349-354

    [104]

    邓晋福, 罗照华, 苏尚国等. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社, 85-122

    [105]

    郝德峰. 2004. 辽吉地区古元古代花岗岩的成因与地壳演化. 硕士学位论文. 青岛: 中国海洋大学, 20-37

    [106]

    郝德峰, 李三忠, 赵国春, 孙敏, 韩宗珠, 赵广涛. 2004. 辽吉地区古元古代花岗岩成因及对构造演化的制约. 岩石学报, 20(6): 1409-1416

    [107]

    贺元凯, 吴泰然, 罗红玲, 张文. 2010. 华北板块北缘中段新太古代的陆-陆碰撞事件: 来自合教S 型花岗岩的证据. 北京大学学报(自然科学版), 46(4): 571-580

    [108]

    侯贵廷, 李江海, 刘玉琳, 钱祥麟. 2005. 华北克拉通古元古代末的伸展事件: 坳拉谷与岩墙群. 自然科学进展, 15(11): 1366-1373

    [109]

    姜春潮. 1984. 再论辽东前寒武纪地层的划分和对比——"辽河群"一词使用的商榷. 中国地质科学院院报, (9): 157-167

    [110]

    李三忠, 杨振声, 刘永江, 刘俊来. 1997. 胶辽吉地区古元古代早期花岗岩的侵位模式及其与隆滑构造的关系. 岩石学报, 13(2): 189-202

    [111]

    李三忠,韩宗珠,刘永江,杨振升,马瑞. 2001. 辽河群区域变质特征及其大陆动力学意义. 地质论评,47(1): 9-18

    [112]

    李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏. 2003. 胶辽地块古元古代构造-热演化与深部过程. 地质学报, 77(3): 328-340

    [113]

    刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb 定年的证据. 岩石学报, 27(4): 943-960

    [114]

    刘永江, 李三忠. 1996. 辽宁海城-大石桥-吉洞地区早元古代花岗岩. 辽宁地质, 13(1): 10-18

    [115]

    卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔慈岩系. 长春: 长春出版社, 1-276

    [116]

    路孝平. 2004. 通化地区古元古代构造岩浆事件. 博士学位论文. 长春: 吉林大学, 29-94

    [117]

    路孝平, 吴福元, 郭敬辉, 殷长建. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化. 岩石学报, 21(3): 721-736

    [118]

    孟恩, 刘福来, 刘建辉, 施建荣. 2012. 辽东南长海地区花岗质片麻岩类的地球化学特征: 对其原岩性质及形成环境的制约. 岩石学报, 28(9): 2793-2806

    [119]

    秦亚. 2013. 辽吉古元古裂谷带构造演化的年代学制约. 博士学位论文. 长春: 吉林大学, 23-132

    [120]

    任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377-386

    [121]

    王晓霞, 王涛, Happala I, 卢欣祥. 2005. 秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义——元素和Nd、Sr同位素地球化学证据. 岩石学报, 21(3): 935-946

    [122]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604

    [123]

    许保良, 阎国翰, 牟保磊, 谭林坤, 何中甫, 乔广生, 张任祜. 1998. 辽宁盖县梁屯-矿洞沟碱性正长岩Rb-Sr年龄及其意义. 科学通报, 43(17): 1885-1887

    [124]

    阎国翰, 蔡剑辉, 任康绪, 何国琦, 牟保磊, 许保良, 李凤棠, 杨斌. 2007. 华北克拉通板内拉张性岩浆作用与三个超大陆裂解及深部地球动力学. 高校地质学报, 13(2): 161-174

    [125]

    杨进辉, 吴福元, 谢烈文, 柳小明. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约. 岩石学报, 23(2): 263-276

    [126]

    张秋生, 杨振声. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社, 218-450

    [127]

    赵寒冬, 刘勇, 邓晋福, 肖庆辉, 马丽玲, 杨元江. 2009. 小兴安岭伊春地区环斑花岗岩组合特征及其地质意义. 中国地质, 36(3): 658-668

    [128]

    钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585-600

    [129]

    周喜文, 魏春景. 2005. 高温变泥质岩石中石榴石、黑云母微区成分的指示意义. 自然科学进展, 15(11): 1389-1395

  • 加载中
计量
  • 文章访问数:  7591
  • PDF下载数:  6014
  • 施引文献:  0
出版历程
收稿日期:  2014-09-08
修回日期:  2014-11-14
刊出日期:  2015-06-30

目录