华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义

谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 任鹏, 刘敦一. 华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义[J]. 岩石学报, 2015, 31(10): 2974-2990.
引用本文: 谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 任鹏, 刘敦一. 华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义[J]. 岩石学报, 2015, 31(10): 2974-2990.
XIE ShiWen, WANG ShiJin, XIE HangQiang, LIU ShouJie, DONG ChunYan, MA MingZhu, REN Peng, LIU DunYi. Petrogenesis of ca.2.7Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(10): 2974-2990.
Citation: XIE ShiWen, WANG ShiJin, XIE HangQiang, LIU ShouJie, DONG ChunYan, MA MingZhu, REN Peng, LIU DunYi. Petrogenesis of ca.2.7Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(10): 2974-2990.

华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义

  • 基金项目:

    本文受国家自然科学基金项目(41402167、41430210、41472169)、中国地质科学院地质研究所基本科研业务经费(J1506)、中国地质调查局重点项目(12120114021301、12120113013700、1212010811033)和国家973项目(2012CB416600)联合资助.

Petrogenesis of ca.2.7Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications

  • 胶东是华北克拉通保存~2.7Ga岩石的主要地区之一。通过地质调查和锆石SHRIMP测年,我们在胶东5个地方识别出2.7Ga的岩石,这些岩石包括片麻状英云闪长岩、片麻状花岗闪长岩以及片麻状高硅奥长花岗岩。SHRIMP测年结果显示,除样品QX12126外,其他样品中的锆石大多具有清晰的岩浆环带,207Pb/206Pb加权平均年龄为2718~2743Ma,指示这些样品的原岩结晶年龄为~2.7Ga。样品QX12126中锆石大多遭受后期改造,核部获得的最老的207Pb/206Pb年龄(2710±11Ma)应最接近原岩的结晶年龄。根据地球化学结果,胶东~2.7Ga岩石可以分为两组。组1以高的(La/Yb)N、Sr/Y,低的Yb、Y为特征,并表现出无Eu异常或正Eu异常;组2则具有低的(La/Yb)N和Sr/Y,高Yb、Y的特征,并具有负的Eu异常。这些地球化学特征指示组1可能来自以榴辉岩或斜长石很少的石榴角闪岩为残留的源区,而组2源区残留可能为几乎不含石榴石的角闪岩。结合放射性同位素数据,我们认为组1可能起源于加厚的中太古代玄武质下地壳,榴辉岩下地壳发生拆沉作用,上涌的热的软流圈加热浅部残留的地壳物质,形成高HREE(组2)的TTG岩石。胶东与霍邱地区新太古代早期岩石成因、更早期地质记录存在相似性,两者可能为同一古老陆块。出露~2.7Ga岩石的地区在华北分布分散,不同地区~2.7Ga岩石的成因可能存在差异,在探讨华北克拉通新太古代早期构造演化过程时应充分考虑这些因素。
  • 加载中
  • [1]

    Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F (ed.). Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier, 1-12

    [2]

    Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170

    [3]

    Condie KC. 2005. TTGs and adakites: Are they both slab melts? Lithos, 80(1-4): 33-44

    [4]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [5]

    Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at ~2.5Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20(1): 149-170

    [6]

    Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840

    [7]

    Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529

    [8]

    Halla J, van Hunen J, Heilimo E and Hölttä P. 2009. Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174(1-2): 155-162

    [9]

    Han BF, Xu Z, Ren R, Li LL, Yang JH and Yang YH. 2012. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: A case study of the Fuping Complex. Geological Magazine, 149(4): 729-742

    [10]

    Henry P, Stevenson RK, Larbi Y and Gariépy C. 2000. Nd isotopic evidence for Early to Late Archean (3.4~2.7Ga) crustal growth in the Western Superior Province (Ontario, Canada). Tectonophysics, 322(1-2): 135-151

    [11]

    Hoffmann JE, Münker C, Næraa T, Rosing MT, Herwartz D, Garbe-Schönberg D and Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157-4178

    [12]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269

    [13]

    Ji ZY. 1993. New data on isotope age of the Proterozoic metamorphic rocks from northern Jiaodong and its geological significance. Shandong Geology, 9(1): 40-51 (in Chinese with English abstract)

    [14]

    Jin K, Xu WL, Wang QH, Gao S and Liu XC. 2003. Formation time and sources of the Huaiguang "migmatitic granodiorite" in Bengbu, Anhui Province: Evidence from SHRIMP zircon U-Pb geochronology. Acta Geoscientia Sinica, 24(4): 331-335 (in Chinese with English abstract)

    [15]

    Klemme S, Prowatke S, Hametner K and Günther D. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochimica et Cosmochimica Acta, 69(9): 2361-2371

    [16]

    Liu JH, Liu FL, Liu PH, Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943-960 (in Chinese with English abstract)

    [17]

    Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303

    [18]

    Liu JH, Liu FL, Ding ZJ, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L and Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton: Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230-250

    [19]

    Liu JH, Liu FL, Ding ZJ, Liu PH and Wang F. 2014. U-Pb dating and Hf isotope study of Early Archean zircons from the Jiaobei terrane, North China craton: Evidence for growth and recycling of ancient continental curst. Acta Petrologica Sinica, 30(10): 2941-2950 (in Chinese with English abstract)

    [20]

    Lu ZL, Song HX, Du LL, Ren LD, Geng YS and Yang CH. 2014. Delineation of the ca. 2.7Ga TTG gneisses in the Fuping Complex, North China craton and its geological significance. Acta Petrologica Sinica, 30(10): 2872-2884 (in Chinese with English abstract)

    [21]

    Ludwig KR. 2001. Squid 1. 02: A User's Manual. Berkeley: Berkeley Geochronology Centre Special Publication, 1-19

    [22]

    Ma MZ, Xu ZY, Zhang LC, Dong CY, Dong XJ, Liu SJ, Liu DY and Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica, 29(2): 501-516 (in Chinese with English abstract)

    [23]

    Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756

    [24]

    Martin H and Moyen JF. 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology, 30(4): 319-322

    [25]

    Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24

    [26]

    Moyen JF. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123(1-4): 21-36

    [27]

    Moyen JF and Martin H. 2012. Forty years of TTG research. Lithos, 148: 312-336

    [28]

    Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265

    [29]

    Parks J, Lin SF, Davis DW, Yang XM, Creaser RA and Corkery MT. 2014. Meso- and Neoarchean evolution of the Island Lake greenstone belt and the northwestern Superior Province: Evidence from lithogeochemistry, Nd isotope data, and U-Pb zircon geochronology. Precambrian Research, 246: 160-179

    [30]

    Percival JA, Skulski T, Sanborn-Barrie M, Stott GM, Leclair AD, Corkery MT and Boily M. 2012. Geology and tectonic evolution of the Superior Province, Canada. In: Percival JA, Cook FA and Clowes RM (eds.). Tectonic Styles in Canada: The Lithoprobe Perspective. Geological Association of Canada, Special Paper 49, 321-378

    [31]

    Polat A, Herzberg C, Munker C, Rodgers R, Kusky T, Li J, Fryer B and Delaney J. 2006. Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca.2.5Ga) peridotites, central orogenic belt, North China craton. Geological Society of America Bulletin, 118(7-8): 771-784

    [32]

    Polat A. 2009. The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: Implications for petrogenetic and geodynamic processes. Precambrian Research, 168(1-2): 83-105

    [33]

    Qi L, Hu J and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513

    [34]

    Rapp RP, Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605-609

    [35]

    Schmidt MW, Dardon A, Chazot G and Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3-4): 415-432

    [36]

    Shan HX, Zhai MG, Wang F, Zhou YY, Santosh M, Zhu XY, Zhang HF and Wang W. 2015. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton. Journal of Asian Earth Sciences, 98: 61-74

    [37]

    Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1): 115-125

    [38]

    Smithies RH, Champion DC and Van Kranendonk MJ. 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters, 281(3-4): 298-306

    [39]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [40]

    Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82

    [41]

    Thurston PC. 1994. Archean volcanic patterns. In: Condie KC (ed.). Archean Crustal Evolution. Developments in Precambrian Geology 11. Amsterdam: Elsevier, 45-84

    [42]

    Tomlinson KY, Davis DW, Stone D and Hart TR. 2003. U-Pb age and Nd isotopic evidence for Archean terrane development and crustal recycling in the south-central Wabigoon subprovince, Canada. Contributions to Mineralogy and Petrology, 144(6): 684-702

    [43]

    Tomlinson KY, Stott GM, Percival JA and Stone D. 2004. Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambrian Research, 132(3): 245-274

    [44]

    Wan YS, Dong CY, Wang W, Xie HQ and Liu DY. 2010a. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton: Evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta Geologica Sinica, 84(1): 91-104

    [45]

    Wan YS, Liu DY, Wang SJ, Dong CY, Yang EX, Wang W, Zhou HY, Ning ZG, Du LL, Yin XY, Xie HQ and Ma MZ. 2010b. Juvenile magmatism and crustal recycling at the end of the Neoarchean in western Shandong Province, North China Craton: Evidence from SHRIMP zircon dating. American Journal of Science, 310(10): 1503-1552

    [46]

    Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH and Diwu CR. 2011. ~2.7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research, 186(1-4): 169-180

    [47]

    Wan YS, Dong CY, Liu DY, Kröner A, Yang CH, Wang W, Du LL, Xie HQ and Ma MZ. 2012. Zircon ages and geochemistry of Late Neoarchean syenogranites in the North China Craton: A review. Precambrian Research, 222-223: 265-289

    [48]

    Wan YS, Xie SW, Yang CH, Kröner A, Ma MZ, Dong CY, Du LL, Xie HQ and Liu DY. 2014. Early Neoarchean (~2.7Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Research, 247: 45-63

    [49]

    Wang AD and Liu YC. 2012. Neoarchean (2.5~2.8Ga) crustal growth of the North China Craton revealed by zircon Hf isotope: A synthesis. Geoscience Frontiers, 3(2): 147-173

    [50]

    Wang LM and Yan TM. 1992. The Archaean tonalites in Qixia area, Shandong. Shandong Geology, 8(1): 80-87 (in Chinese with English abstract)

    [51]

    Wang QY, Zheng JP, Pan YM, Dong YJ, Liao FX, Zhang Y, Zhang L, Zhao G and Tu ZB. 2014a. Archean crustal evolution in the southeastern North China Craton: New data from the Huoqiu Complex. Precambrian Research, 255: 294-315

    [52]

    Wang W, Yang EX, Zhai MG, Wang SJ, Santosh M, Du LL, Xie HQ, Lv B and Wan YS. 2013. Geochemistry of ~2.7Ga basalts from Taishan area: Constraints on the evolution of Early Neoarchean granite-greenstone belt in western Shandong Province, China. Precambrian Research, 224: 94-109

    [53]

    Wang W, Zhai MG, Li TS, Santosh M, Zhao L and Wang HZ. 2014b. Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane. Precambrian Research, 241: 146-160

    [54]

    Whalen JB, Percival JA, McNicoll VJ and Longstaffe FJ. 2002. A mainly crustal origin for tonalitic granitoid rocks, superior province, Canada: Implications for Late Archean tectonomagmatic processes. Journal of Petrology, 43(8): 1551-1570

    [55]

    Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35

    [56]

    Wu FY, Zhao GC, Wilde SA and Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545

    [57]

    Wu ML, Zhao GC, Sun M and Li SZ. 2014a. A synthesis of geochemistry and Sm-Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane: Constraints on petrogenesis and tectonic evolution of the Eastern Block, North China Craton. Precambrian Research, 255: 885-899

    [58]

    Wu ML, Zhao GC, Sun M, Li SZ, Bao ZA, Yuk TP, Eizenhöefer PR and He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84

    [59]

    Xie HQ, Wan YS, Wang SJ, Liu DY, Xie SW, Liu SJ, Dong CY and Ma MZ. 2013. Geology and zircon dating of trondhjemitic gneiss and amphibolite in the Tangezhuang area, eastern Shandong. Acta Petrologica Sinica, 29(2): 619-629 (in Chinese with English abstract)

    [60]

    Xie SW, Xie HQ, Wang SJ, Kröner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY and Wan YS. 2014. Ca. 2.9Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Research, 255: 538-562

    [61]

    Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Liu DY and Wan YS. 2014. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in the eastern Shandong, North China craton. Acta Petrologica Sinica, 30(10): 2989-2998 (in Chinese with English abstract)

    [62]

    Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359

    [63]

    Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Geng YS. 2013. Delineation of the ca. 2.7Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications. Journal of Asian Earth Sciences, 72: 178-189

    [64]

    Yang JH, Wu FY, Wilde SA and Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167(1-2): 125-149

    [65]

    Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

    [66]

    Zhang Q, Jin WJ, Wang YL, Li GD, Wang Y and Jia XQ. 2006. A model of delamination of continental lower crust. Acta Petrologica Sinica, 22(2): 265-276 (in Chinese with English abstract)

    [67]

    Zhang SB, Tang J and Zheng YF. 2014. Contrasting Lu-Hf isotopes in zircon from Precambrian metamorphic rocks in the Jiaodong Peninsula: Constraints on the tectonic suture between North China and South China. Precambrian Research, 245: 29-50

    [68]

    Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ and Li HM. 2004. 3.6Ga lower crust in Central China: New evidence on the assembly of the North China craton. Geology, 32(3): 229-232

    [69]

    Zheng JP, Griffin WL, O'Reilly SY, Hu BQ, Zhang M, Tang HY, Su YP, Zhang ZH, Pearson N, Wang FZ and Lu FX. 2008. Continental collision and accretion recorded in the deep lithosphere of Central China. Earth and Planetary Science Letters, 269(3-4): 497-507

    [70]

    Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ and Cheng H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323-340

    [71]

    Zhu XY, Zhai MG, Chen FK, Lv B, Wang W, Peng P and Hu B. 2013. ~2.7Ga crustal growth in the North China Craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui Complex in the Zhongtiao terrane. The Journal of Geology, 121(3): 239-254

    [72]

    纪壮义. 1993. 胶北元古界变质岩的同位素测年新成果及其地质意义. 山东地质, 9(1): 40-51

    [73]

    靳克, 许文良, 王清海, 高山, 刘晓春. 2003. 蚌埠淮光"混合花岗闪长岩"的形成时代及源区: 锆石SHRIMP U-Pb地质年代学证据. 地球学报, 24(4): 331-335

    [74]

    刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据. 岩石学报, 27(4): 943-960

    [75]

    刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 2014. 胶北太古宙早期锆石U-Pb定年及Hf同位素研究: 华北克拉通古老陆壳增生及再循环的证据. 岩石学报, 30(10): 2941-2950

    [76]

    路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉. 2014. 华北克拉通阜平杂岩中~2.7Ga TTG片麻岩的厘定及其地质意义. 岩石学报, 30(10): 2872-2884

    [77]

    马铭株, 徐仲元, 张连昌, 董春艳, 董晓杰, 刘守偈, 刘敦一, 万渝生. 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成. 岩石学报, 29(2): 501-516

    [78]

    王来明, 鄢毅民. 1992. 山东栖霞地区太古宙英云闪长岩. 山东地质, 8(1): 80-87

    [79]

    颉颃强, 万渝生, 王世进, 刘敦一, 谢士稳, 刘守偈, 董春艳, 马铭株. 2013. 胶东谭格庄地区奥长花岗质片麻岩和斜长角闪岩的野外地质和锆石SHRIMP定年. 岩石学报, 29(2): 619-629

    [80]

    谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年. 岩石学报, 30(10): 2989-2998

    [81]

    张旗, 金惟俊, 王元龙, 李承东, 王焰, 贾秀勤. 2006. 大陆下地壳拆沉模式初探. 岩石学报, 22(2): 265-276

  • 加载中
计量
  • 文章访问数:  9497
  • PDF下载数:  6951
  • 施引文献:  0
出版历程
收稿日期:  2015-05-01
修回日期:  2015-07-26
刊出日期:  2015-10-31

目录