岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法

杨竞红 GerharBRUGMANN 等. 岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法[J]. 岩石学报, 2001, 17(2): 325-331.
引用本文: 杨竞红 GerharBRUGMANN 等. 岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法[J]. 岩石学报, 2001, 17(2): 325-331.
Gerhard BR. Precise determination of the platinum-group elements and Os isotopic ratios inlow-level rock samples.[J]. Acta Petrologica Sinica, 2001, 17(2): 325-331.
Citation: Gerhard BR. Precise determination of the platinum-group elements and Os isotopic ratios inlow-level rock samples.[J]. Acta Petrologica Sinica, 2001, 17(2): 325-331.

岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法

  • 基金项目:

    本文受国家杰出青年科学基金项目(编号:49925306)和国家重点基础研究项目(G1999043208)资助.

Precise determination of the platinum-group elements and Os isotopic ratios inlow-level rock samples.

  • 铂族元素(Os,Ir,Pt,Ru,Rh,Pd)具有强亲铁性和强亲铜性,为一组地球化学性质相近的相容元素,铂族元素包含两个同位素衰变体系(^190Pt-^186Os和^187Re-^187Os)。近年来,铂族元素和Re-Os同位素在研究各类不同地持作用过程中,尤其是在地幔岩石的研究中,作用独特,效果显著。由于地幔岩石的铂族元素含量较低,因此高精度,高灵敏度的分析测试方法的研究就显得十分重要。以往的分析方法(如常规的ICP-MS和中子活化分析方法),对含10^-9-10^012级低含量铂族元素的产品分析精度一般较差(>15%-100%)。所采用的分析流程通常也无法同时获得样品的铂族元素含量和Os同位素比值。本文采用新的熔样方法(HAP-S高温高压釜酸溶法),新的化学流程(溶剂萃取和阴离子交换树脂柱)和新的分析仪器(多接收等离子体质谱MC-ICPMS和负离子热电离质谱N-TIMS)。用同位素稀释法对低含量地幔橄榄岩样品同时测定的铂族元素含量和Os同位素比值,获得了高精度的分析结果。对所分析的地橄榄样品中的铂族元素分配曲线和Os同位素组成的地质意义进行了初步探讨。
  • 加载中
  • [1]

    [1]Birck JL, Roy Barman M and CapmasF. 1997. Re-Os isotopic measurements at the femtomole level in natural samples.Geostand.News, 21:19-28

    [2]

    [2]Burnham OM, Rogers NW, Pearson DG, van Calsteren PW,Hawkesworth CJ. 1998. Thepetrogenesis of the eastern Pyrenean peridotites: an integrated study of their whole-rockgeochemistry and Re Os isotope composition. Geochim.Cosmochim. Acta, 62(13): 2293-2310

    [3]

    [3]Creaser RA, Papanastassiou DA, Wasserburg GJ. 1991. Negative thermal ion massspectrometry of osmium, rhenium, and iridium. Geochim. Cosmochim. Acta, 55:397-401

    [4]

    [4]Hall GEM, Pelchat JC. 1994. Analysis of geological materials for gold, platinum andpalladium at low ppb levels by fire assayICP mass spectrometry. Chem Geol, 115:61-72

    [5]

    [5]Halliday AN et al. 1998. Applications of multiple collector ICPMS tocosmochemistry, geochemistry and paleoceanography.Geochim. Cosmochim. Acta, 62:919-940

    [6]

    [6]Halliday AN et al. 1995. Recent developments in inductively coupled plasma magneticsector multiple collector mass spectrometry.Int. J. MassSpectr. Ion. Proc., 146/147:21-33

    [7]

    [7]Hassler DR, Peucker-Ehrenbrink B, Ravizza GE. 2000. Rapid determination of Osisotopic composition by sparging OsO4 into a magnetic-sector ICP-MS. Chem. Geol. ,166:1-14

    [8]

    [8]Jarvis I, Totland MM, Jarvis KE. 1997. Determination of the platinum-group elementsin geological materials by ICP-MS using microwave digestion, alkali fusion andcation-exchange chromatography. Chem. Geol., 143:27-42

    [9]

    [9]Lindner M, Leich DA, Russ GP, Bazan JM, Borg RJ. 1989. Direct determination of thehalf-life of 187Re. Geochim. Cosmochim.Acta, 53:1597-1606

    [10]

    [10]Lorand JP, Pattou L, Gros M. 1999. Fractionation of platinumgroup elements andgold in the upper mantle: A detailed study in pyrenean orogenic lherzolites. J. Petrol. ,40:957-981

    [11]

    [11]Meisel T, Walker RJ, Morgan JW. 1996. The osmium isotopic composition of the Earth′s primitive upper mantle. Nature,383:517-520

    [12]

    [12]Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP.1995. Re-Os, Sm-Nd, andRb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian cratonmodified by multistage metasomatism. Geochim. Cosmochim.Acta, 59:959-977

    [13]

    [13]Rehkamper M, Halliday AN. 1997. Development and application of new ion-exchangetechniques for the separation of the platinum group and other siderophile elements fromgeological samples.Talanta, 44:663-672

    [14]

    [14]Rehkamper M et al. 1999. Ir, Ru, Pt, and Pd in basalts and komatiites: Newconstraints for the geochemical behavior of the platinum-group elements in the mantle.Geochim. Cosmochim.Acta, 63(22): 3915-3934

    [15]

    [15]Reisberg L, Allegre C-J, Luck J-M. 1991. The Re-Os systematics of the Rondaultramafic complex of southern Spain. Earth Planet. Sci. Lett. , 105:196-213

    [16]

    [16]Schmidt G, Palme H, Kratz K-L, Kurat G. 2000. Are highly siderophile elements(PGE, Re and Au) fractionated in the upper mantle of the earth? New results on peridotitesfrom Zabargad. Chem. Geol., 163:167-188

    [17]

    [17]Shirey SB, Walker RJ. 1995. Carius tube digestions for low-blank rhenium-osmiumanalysis. Anal. Chem. , 67: 2136- 2141

    [18]

    [18]Shirey SB, Walker RJ. 1998. The Re-Os isotope system in cosmochemistry andhigh-temperature geochemistry. Annu.Rev. Earth Planet. Sci. , 26:423-500

    [19]

    [19]Snow JE, Reisberg L. 1995. Os isotopic systematics of the MORB mantle: resultsfrom altered abyssal peridotites. Earth Planet.Sci. Lett. , 133:411-421

    [20]

    [20]Snow JE, Schmidt G. 1998. Constraints on Earth accretion deduced from noble metalsin the oceanic mantle. Nature, 391: 166-169

    [21]

    [21]Snow JE, Schmidt G, Rampone E. 2000. Os isotopes and highly siderophile elements(HSE) in the Ligurian ophiolites, Italy.Earth Planet. Sci. Lett. , 175:119-132

    [22]

    [22]Volkening J, Walczyk T, Heumann K. 1991. Osmium isotope ratio determinations bynegative thermal ionization mass spectrometry. Int. J. Mass Spectr. Ion. Proc. , 105:147-159

    [23]

    [23]Walker RJ. 1988. Low-blank chemical separation of rhenium and osmium from gramquantities of silicate rock for measurement by resonance ionization mass spectrometry.Anal Chem. , 60:1231-1234

    [24]

    [24]Walker RJ, Carlson RW, Shirey SB, Boyd FR. 1989. Os, Sr, Nd,and Pb isotopesystematics of Southern African peridotite xenoliths: Implications for the chemicalevolution of subcontinental mantle. Geochim. Cosmochim. Acta, 53:1583-1595

  • 加载中
计量
  • 文章访问数:  6810
  • PDF下载数:  4594
  • 施引文献:  0
出版历程
修回日期:  2000-09-10
刊出日期:  2001-05-31

目录