晚太古代Sanukite(赞岐岩)与地球早期演化

张旗 王焰 钱青 翟明国 金惟浚 王元龙 简平. 晚太古代Sanukite(赞岐岩)与地球早期演化[J]. 岩石学报, 2004, 20(6): 1355-1362.
引用本文: 张旗 王焰 钱青 翟明国 金惟浚 王元龙 简平. 晚太古代Sanukite(赞岐岩)与地球早期演化[J]. 岩石学报, 2004, 20(6): 1355-1362.
ZHANG Qi~1,WANG Yan~2,QIAN Qing~1,ZHAI MingGuo~1,JIN WeiJun~1,WeiJun~1,WANG YuanLong~1 and JIAN Ping~3 1. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China 2. Department of Earth Sciences,The University of Hong Kong,Hong Kong,China 3. Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China. Sanukite of late Archaean and early Earth evolution[J]. Acta Petrologica Sinica, 2004, 20(6): 1355-1362.
Citation: ZHANG Qi~1,WANG Yan~2,QIAN Qing~1,ZHAI MingGuo~1,JIN WeiJun~1,WeiJun~1,WANG YuanLong~1 and JIAN Ping~3 1. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China 2. Department of Earth Sciences,The University of Hong Kong,Hong Kong,China 3. Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China. Sanukite of late Archaean and early Earth evolution[J]. Acta Petrologica Sinica, 2004, 20(6): 1355-1362.

晚太古代Sanukite(赞岐岩)与地球早期演化

  • 基金项目:

    国家自然科学基金(40472047),国家自然科学重点基金项目(40234045),中国科学院知识创新工程基金(KZCX 1-07和KZCX2-SW-119)资助的项目

  • Shirey and Hanson(1984)将某些太古代的高镁闪长岩套称为sanukite(赞岐岩),类似于日本中新世(11~15Ma)Setouchi火山岩带的高镁安山岩。Sanukitoids由闪长岩-二长闪长岩-花岗闪长岩组成,不同于TTC岩套(奥长花岗岩-英云闪长岩-花岗闪长岩)。Sanukitoids具有下列地球化学特征:富Mg,Mg~#>0.60,Ni和Cr>100μg/g,Sr和Ba>500μg/g,LREE富集(大于球粒陨石100倍),无Eu异常。高镁安山岩在太古代很少见,而其相应的侵入岩高镁闪长岩或sanukitoids,虽然数量也很少,但却是各地晚太古代地体中随处可见的。Sanukitoids的原始岩浆是交代的地幔楔部分熔融形成的,随后可能经历了广泛的分离结晶作用。TTC和sanukitoids岩套可以相伴产出,二者均与板片熔融有关,TTG与其直接有关,sanukitoids可能与其间接有关。全球Sanukitoids主要集中在晚太古代时期,可能暗示板块的消减作用在~3.0Ga以后才起了重要的作用。
  • 加载中
  • [1]

    [1]Artemenko G V. 2003. Archaean high-Mg granitoids (sanukitoids) in the Ukrainian shield and its comparison with rocks of TTG suite.European Geophysical Society, Geophysical Research Abstracts,Vol. 5: 05633

    [2]

    [2]Beakhouse G P, Heaman L M, Creaser R A. 1999. Geochemical and UPb zircon geochronological constraints on the development of a Late Archean greenstone belt at Birch Lake, Superior Province, Canada.Precambrian Research, 97: 77 - 97

    [3]

    [3]Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews, 18:1-75

    [4]

    [4]Guseva N. 2003. Lamprofires of Karelia. European Geophysical Society,Geophysical Research Abstracts, Vol. 5 , 00681

    [5]

    [5]Halla J. 2003. Geochemistry and lead isotope systematics of Neoarchaean high-K granitoid rocks in the Nilsia and Lieksa, eastern Finland.European Geophysical Society, Geophysical Research Abstracts,Vol. 5, 09707

    [6]

    [6]Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B,Mababaleswar B. 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India:constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99: 225 - 254

    [7]

    [7]Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75: 359 -371

    [8]

    [8]Kampunzua A B, Tombaleb A R, Zhaia M, Bagaia Z, Majaulec T,Modisi M P. 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, 71: 431-460

    [9]

    [9]Lobach Z S B, Chekulaev V P, Ivanikov V V, Kovalenko A V,Bogomolov E S. 2000. Late Archean high-Mg and subalkaline granitoids and lamprophyres as indicators of gold mineralization in Karelia (Baltic Shield ), Russia. in: Kremenetskv A A, et al.(eds.) Ore-bearing Granites of Russia and Adjacent Countries.Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements. Moscow, 193-211

    [10]

    [10]Martin H, Moyen J F. 2002. Secular changes in TFG composition as markers of the progressive cooling of the Earth. Geology, 30:319 -322

    [11]

    [11]Martin H. 1999. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 46:411 -429

    [12]

    [12]Moyen J F, Martin H, Jayananda M. 2001. Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth: the Closepet granite (South India). Precambrian Research,112: 87 - 105

    [13]

    [13]Moyen JF, Martin H, Jayananda M, Auvray B. 2003. Late Archaean granites: a typology based on the Dharwar Craton (India).Precambrian Research, 127: 103 - 123

    [14]

    [14]Piercey S J, Murphy D C, Mortensen J K, Paradis S. 2001. Boniniticmagmatism in a continental margin setting, Yukon-Tanana Terrane,southeastern Yukon, Canada. Geology, 29:731 -734.

    [15]

    [15]Polat A, Hofmann A W, Rosing M T. 2002. Boninite-like volcanic rocks in the 3. 7 - 3. 8 Ga Isua greenstone belt, West Greenland;geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184:231 -254

    [16]

    [16]Rapp R, Shimizu N, Norman M C, Applegate G S. 2000. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology, 160: 335- 356

    [17]

    [17]Rapp RP, Shimuzu N. 1996. Arc-magmatism in hot subduction zones:interactions between slab-derived melts and the mantle wedge and the petrogenesis of adakites and high magnesium andesites (HMA). J.Conf. , Abs. , 1: 497

    [18]

    [18]Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn B M. 1998. Setouchi high-Mg andesites revisited; geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160: 479 - 492

    [19]

    [19]Shirey S B, Hanson G N. 1984. Mantle-derived Archaean monzodiorites and trachyandesites. Nature, 310:222-224

    [20]

    [20]Smithies R H, Champion D C, Sun S S. 2004. Evidence for early LREEenriched mantle source regions: diverse magmas from the 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. Journal of Petrology,45: 1515 - 1537

    [21]

    [21]Smithies R H, Champion D C. 1999. High-Mg diorite from the Archaean Pilbara Craton; anorogenic magmas derived from a subductionmodified mantle. Geological Survey of Western Australia, Annual Review. Perth: Western Australia Geological Survey, West.Australia, 1998-99, 45 -59

    [22]

    [22]Smithies R H, Champion D C. 2000. The Archaean high-Mg diorite suite: links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology,41: 1653 - 1671

    [23]

    [23]Smithies R H, Champion D C. 2003. Adakite, TTG and Arohaean crustal evolution. European Geophysical Society, Geophysical Research Abstracts, Vol.5, 01630

    [24]

    [24]Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters. 182: 115 - 125

    [25]

    [25]Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantlederived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in Southwestern Superior Province. Canadian Journal of Earth Sciences, 26, 1688 - 1712

    [26]

    [26]Stern R, Hanson G. 1991. Archean high-Mg granodiorites: a derivative of light rare earth element enriched monzodiorite of mantle origin. J.Petrol. ,32:201 -238

    [27]

    [27]Stevenson R, Henry P, Gariapy C. 1999. Assimilation fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada. Precamb. Res. , 96:83 -99

    [28]

    [28]Stone D. 2000. Geology, mineral chemistry and thermobarometry of the Entwine Stock, Northwest Ontario: base metal, platinum group element and gold mineralization. Ontario Geological Survey,Toronto, Canada, 37

    [29]

    [29]Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan: Ⅱ. Melting phase relations at high pressures. Earth Planet. Sci. Lett. ,60:305-317

    [30]

    [30]Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction; generation of high-Mg andesites in the Setouchi volcanic belt, Southwest Japan.Geology, 29: 323 - 326

    [31]

    [31]Whalena J B, Percival J A, McNicoll V J, Longstaffe F J. 2004. Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: implications for late Archean tectonomagmatic processes.Precambrian Research, 132: 303 - 326

    [32]

    [32]Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M.1995. Magnesiun andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull., 107:505-519

  • 加载中
计量
  • 文章访问数:  7606
  • PDF下载数:  8001
  • 施引文献:  0
出版历程
修回日期:  2004-09-17
刊出日期:  2004-11-30

目录