南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究

彭头平 王岳军 范蔚茗 郭锋 彭冰霞. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J]. 岩石学报, 2004, 20(5): 1253-1262.
引用本文: 彭头平 王岳军 范蔚茗 郭锋 彭冰霞. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J]. 岩石学报, 2004, 20(5): 1253-1262.
PENG TouPing~. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis[J]. Acta Petrologica Sinica, 2004, 20(5): 1253-1262.
Citation: PENG TouPing~. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis[J]. Acta Petrologica Sinica, 2004, 20(5): 1253-1262.

南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究

  • 基金项目:

    国家自然科学基金(40303005,40334039),中国科学院知识创新项目(GIGCX-03-0,KZCX1-102)

SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis

  • 南太行山符山和东冶角闪闪长岩岩体的精细SHRIMP锆石U-Pb定年和元素-同位素地球化学研究表明:符山角闪闪长岩体形成于126.7±1.1Ma,东冶角闪闪长岩体形成于125.9±0.9Ma,与区内基性侵入岩和北太行地区侵入杂岩具有相似的形成年龄,表明晚中生代(±130Ma左右)太行山地区经历了与华北陆块同期的重要构造岩浆事件。区内闪长质岩石SiO_2=54.84%~65.75%,MgO=1.31%~3.89%,K_2O Na_2O=6.53%~11.40%,mg值=0.36~0.58,(La/Yb)_(cn)=9.86~22.77,(Gd/Yb)_(cn)=1.51~2.00;Eu/Eu=1.00~1.23,以富集LREE、LILE元素和明显亏损Nb-Ta、Zr-Hf-Ti等高场强元素为特征。~(87)Sr/~(86)Sr(t)=0.705363~0.706165,ε_(Nd)(t)=-13.8~-16.8,源自于EMI型富集岩石圈地幔,可解释为新生地幔底侵物质熔融后经过结晶分异作用的产物。与华北克拉通内部其他地区一样,早白垩世南太行山地区处于软流圈上涌的岩石圈伸展构造背景。
  • 加载中
  • [1]

    [1]Cai Jianhui. 2001. Geochemistry and Ages of the Adakitic Intermediate Rocks in Wang\' an Pluton , Beijing: Seismic Press, 82 (in Chinese)

    [2]

    [2]Chen B, Zhai M G. 2003. Geochemistry of Late Mesozoic Lamprophyre dikes from the Taihang Mountains, North China and implications for the subcontinental lithospheric mantle. Geol. Mag. , 140 (1): 87 -93

    [3]

    [3]Chen B, Zhai M G, Shao J A. 2003. Petrogenesis and significance of the Mesozoic North Taihang complex: major and trace element evidence.Science in China (series D): 941 -953

    [4]

    [4]Claoue-Long J C, Compston J, Roberts C M. Fanning, 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40 Ar/39 Ar analysis, in: Geochronology Time Scales and Global Stratigraphic Correlation 54, SEPM Special Publication, pp. 3-21

    [5]

    [5]Davis G A, Zhang Y D, Wang C. 1998. Geochemistry and geochronology of Yanshan Belt tectonics., in: Collected Works of International Symposium on Geological Science, Beijing: Science Press, 275 -292

    [6]

    [6]Dong J H, Chen B, Zhou L. 2003. The petrogenesis of Fushan intrusion in the southern Taihang Mountains: the petrological and geochemical evidences. Progress in Natural Science, 13 (7): 767-773 (in Chinese with English abstract)

    [7]

    [7]Fan W M, Guo F, Wang Y J, Zhang M. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China:partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie Orogen? Chem. Geol. , 209:27 -48

    [8]

    [8]Fan W M, Guo F, Wang Y J. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China: Phys. Chem. Earth (A), 26(9-10): 733 -746

    [9]

    [9]Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: where is the Archaean keel? J. Petrology, 41 (7): 933 -950

    [10]

    [10]HBGMR (Hebei Bureau of Geology and Mineral Resources). 1989. Regional geology of Beijing, Tianjin and Hebei province. Beijing:Geological Publishing House, p. 741 (in Chinese)

    [11]

    [11]Huang F S, Xue S Z. 1990. The discovery of the mantle-derived ultramafic xenoliths in Handan-Xingtai intrusive complex and their mineralogical-geochemical characteristics. Acta Petrologica Sinica,(4) :40 -45 (in Chinese with English abstract)

    [12]

    [12]Jahn B M, Wu F Y, Lo C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, Central China: Chem. Geol. , 157:119- 146

    [13]

    [13]Liu D Y, Nutman A P, Compston W, 1992. Remnants of 3800 Ma crust in the Chinese Part of the Sino-Korean craton. Geology, 20: 339 -342

    [14]

    [14]Liu Yin, Liu Haicheng, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace elements using ICP-MS. Geochimica, 25(6): 552 -558. (in Chinese with English abstract)

    [15]

    [15]Ludwig K R. 2001. Sqiud 1. 02: A user manual. Berkeley Geochronological Center Special Publiccation, 219

    [16]

    [16]Ludwig K R. 1999. Using Isoplot/EX, version 2, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 1 a, 47

    [17]

    [17]Luo Z H, Deng J F, Zhao G C, Cao Y Q. 1997. Characteristics of magmatic activities and orogenic process of Taihangshan intraplate orogen. Earth Science-Journal of China University of Geoscience,22(3): 279 -284 (in Chinese with English abstract)

    [18]

    [18]Niu S Y, Chen L, Xu C S. 1994. The crustal evolution and metallogenic regularity of the Taihangshan area. Beijing: Seismological Press,p203 (in Chinese)

    [19]

    [19]Song B, Zhang Y H, Wan Y S. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48 (suppl.): 26-30 (in Chinese with English abstract)

    [20]

    [20]Song X Y and Feng Z Y. 1999. Minor element geochemistry of Mesozoic magmatic intrusions of Southern Taihang Mountains. Journal and Min. Res. North China, 14 (1): 1-17 (in Chinese with English abstract)

    [21]

    [21]Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes.Magmatism in the Ocean Basin (Sauders, A D and Norry, M J,eds.), Geol. Soc. Spec. Pub., 42:313-345

    [22]

    [22]Tan D J, Lin J Q. 1994. Mesozoic potassic rocks in the North China.Seism. Pub. House, Beijing, 1-184 (in Chinese)

    [23]

    [23]Taylor, S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford Press, Blackwcll, 312

    [24]

    [24]Wang Y J, Fan W M, Zhang H F, Peng T P. Petrogencsis of Mesozoic high-Mg gabbros in the southern Taihang Mountains of Central North China: implication for paleosubduction-modified lithospheric mantle.Lithos(in review.)

    [25]

    [25]Wang Y J, Fan W M, Zhang Y H, Guo F. 2003. Structural evolution and 40 Ar/39 Ar dating of the Zanhuang metamorphic domain in North China Craton: constraints on Paleoproterozoic tectonothermal overprinting. Precambrian Research, 122/1-4:159-182

    [26]

    [26]Wang Y J, Fan W M, Zhang Y H. Geochemical, 40Ar/39 Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic maric dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research(in press.)

    [27]

    [27]Williams I S, Claesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol. , 97: 205 -217

    [28]

    [28]Wu F Y, Sun D Y. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China. Journal of Changchun University of Science and Technology, 29 (4): 313-318 (in Chinese with English abstract)

    [29]

    [29]Xu W L, Lin J. 1991. The discovery and study of mantle-drived dunite inclusions in hornblende-diorite in the Handan-Xingtai area, Hebei.Acta Geologica Sinica, 65 (1): 33-41 (in Chinese with English abstract)

    [30]

    [30]Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in North China: Evidence,timing and mechanism. Physic. Chem. Earth (A) , 26 (9-10): 47 -757

    [31]

    [31]Zhang H F, Sun M, Yin J F Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithospherebeneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 67 (22): 4373 -4387

    [32]

    [32]Zhang H F, Sun M, Zhou M F, Fan W M, Zhou X H, Zhai M G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol. Mag. , 141: 55 -62

    [33]

    [33]Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol., 141: 241 -253

    [34]

    [34]Zhang Q, Qian Q, Wang E Q, Wang Y, Zhao T P, Hao J, Guo G J.2001. An east China plateau in mid-late Yanshanian period:implication from adakites. Chinese Journal of Geology, 36 (2) :248-255 (in Chinese with English abstract)

    [35]

    [35]Zheng J P, O\' Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J.2001. Relict refractory mantle beneath the eastern North China Block: significance for lithosphere evolution. Lithos, 57, 43-66

    [36]

    [36]蔡剑辉.2001.王安镇岩体埃达克质中酸性岩岩石地球化学及年代学.埃达克质岩及其地球动力学意义研讨会论文摘要.北京:地震出版社.82

    [37]

    [37]陈斌,翟明国,邵济安.2002.太行山北段岩基的成因和意义:主要和微量元素地球化学证据.中国科学(D辑),32:896-907

    [38]

    [38]董建华,陈斌,周凌.2003.太行山南段符山岩体的成因:岩石学和地球化学证据.自然科学进展,13(7):767-774

    [39]

    黄福生,薛绥洲.1990.邯邢侵入体中幔源超镁铁质包体的发现及其矿物地质化学特征.岩石学报,(4):40-45

    [40]

    [40]河北地质矿产局.1989.河北北京天津区域地质志.北京:地质出版社,741

    [41]

    刘颖,刘海臣,李献华.1996. ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,5(6):552-558

    [42]

    [42]罗照华,邓晋福,赵国春.1997.太行山造山带岩浆活动特征及其造山过程反演.地球科学,22(3):279-284

    [43]

    [43]牛树银,陈路,许传诗.1994.太行山区地壳演化及成矿规律.北京:地震出版社

    [44]

    [44]宋彪,张玉海,万渝生.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30

    [45]

    [45]宋新宇,冯钟燕.1999.太行山南段中生代侵入体微量元素地球化学及岩浆源区性质探讨.华北地质矿产杂志,14(1):1-17

    [46]

    [46]谭东娟,林景仟.1994.华北地台中生代钾质岩浆区.北京:地震地质出版社,1-184

    [47]

    [47]吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,29(4):313-318

    [48]

    许文良.1991.河北邯邢地区角闪闪长岩中地幔纯橄榄岩包体的发现与研究.地质学报,65(1):33-41

    [49]

    [49]张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,36(2):248-255

  • 加载中
计量
  • 文章访问数:  8229
  • PDF下载数:  7147
  • 施引文献:  0
出版历程
修回日期:  2004-07-26
刊出日期:  2004-09-30

目录