四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源

何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406.
引用本文: 何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406.
HE ChengZheng, XIAO ChaoYi, WEN HanJie, ZHOU Ting, ZHU ChuanWei, FAN HaiFeng. Zb-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406.
Citation: HE ChengZheng, XIAO ChaoYi, WEN HanJie, ZHOU Ting, ZHU ChuanWei, FAN HaiFeng. Zb-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406.

四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源

  • 基金项目:

    本文受国家重点基础研究发展计划(“973”)项目(2014CB440906)、国家自然科学基金项目(41430315、41573011)、中国科学院西部之光项目、中国科学院青年促进会项目和矿床地球化学国家重点实验室“十二·五”项目(SKLOSG-ZY125-07)联合资助.

详细信息

Zb-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components

More Information
  • 四川天宝山铅锌矿床位于扬子板块西南缘,赋矿地层为上震旦统灯影组白云岩。尽管这个地区已有大量的科研工作,但其成矿物质来源仍然存在争议。本文主要测定了闪锌矿微区样品的锌和硫同位素组成,以及三个中段的闪锌矿单矿物、上震旦统灯影组白云岩和会理群天宝山组砂岩的锌同位素组成。闪锌矿微区样品的δ66Zn值介于0.39‰~0.52‰之间,平均值为0.46‰,δ34SCDT值介于4.24‰~4.87‰之间,平均值为4.59‰。同一块手标本上闪锌矿微区样品具有均一的锌同位素组成表明小尺度上(10×10cm2)热液流体具有均一的锌同位素组成。在大尺度上(矿体),三个中段的闪锌矿的锌同位素组成范围变化较大,其δ66Zn值介于0.15‰~0.73‰之间。同一块手标本上早期阶段的闪锌矿具有更重的锌同位素组成表明早期阶段的成矿流体可能具有更重的锌同位素组成。三个中段闪锌矿的锌同位素组成变化主要受成矿流体中锌同位素组成和成矿流体的迁移就位途径控制。上震旦统灯影组白云岩的δ66Zn值介于0.06‰~0.35‰之间,平均值为0.21‰,暗示热液淋滤控制了灯影组白云岩的锌同位素组成。会理群天宝山组砂岩的δ66Zn值为0.62‰,可能代表了未经热液淋滤的沉积端元的锌同位素组成。本次研究表明天宝山铅锌矿床的锌主要来源于上震旦统灯影组白云岩,但不能排除白云岩之上的沉积盖层、基底和更深物质的贡献;硫主要来源于上震旦统灯影组地层中的蒸发岩(主要通过热化学还原作用形成还原硫)。
  • 加载中
  • [1]

    Albarède F. 2004. The stable isotope geochemistry of copper and zinc. Reviews in Mineralogy & Geochemistry, 55(1):409-427

    [2]

    Archer C, Vance D and Butler I. 2004. Abiotic Zn isotope fractionations associated with ZnS precipitation. Geochimica et Cosmochimica Acta, 68(11):A325

    [3]

    Chaussidon M, Albarède F and Sheppard SMF. 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92(2):144-156

    [4]

    Duan JL, Tang JX and Lin B. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet:Implications for the source of the ore-forming metals. Ore Geology Reviews, 78:58-68

    [5]

    Feng JQ, Li Y and Liu WZ. 2009. Geological features and ore control conditions for the Tianbaoshan Pb-Zn deposit in Huili. Acta Geologica Sichuan, 29(4):426-430, 434 (in Chinese with English abstract)

    [6]

    Fernandez A and Borrok DM. 2009. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chemical Geology, 264(1-4):1-12

    [7]

    Fujii T, Moynier F, Pons ML and Albarède F. 2011. The origin of Zn isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 75(23):7632-7643

    [8]

    Gagnevin D, Boyce AJ, Barrie CD, Menuge JF and Blakeman RJ. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta, 88:183-198

    [9]

    Gao S, Yang J, Zhou L, Li M, Hu ZC, Guo JL, Yuan HL, Gong HJ, Xiao GQ and Wei JQ. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3Ga granitoid gneisses. American Journal of Science, 311(2):153-182

    [10]

    Guan SP and Li ZX. 1999. Lead-sulfur isotope study of carbonate-hosted lead-zinc deposits at the eastern margin of the Kangdian axis. Geology-Geochemistry, 27(4):45-54 (in Chinese with English abstract)

    [11]

    Han RS, Liu CQ, Huang ZL, Chen J, Ma DY, Lei L and Ma GS. 2007. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan, South China. Ore Geology Reviews, 31(1-4):360-383

    [12]

    Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita, 47(6):579-588

    [13]

    Hu RZ, Mao JW, Hua RM and Fan WM. 2015. Intra-Continental Mineralization of South China Craton. Beijing:Science Press, 1-903 (in Chinese)

    [14]

    Jiang SY, Lu JJ, Gu LX, Hua RM and Jiang YH. 2001. Determination of Cu, Zn, Fe isotopic compositions by MC-ICPMS and their geological applications. Bulletin of Mineralogy Petrology and Geochemistry, 20(4):431-433 (in Chinese with English abstract)

    [15]

    Jing ZG. 2006. Research on the ore-controlling factors, metallogenic regularity and prediction of lead-zinc ore district in Northwest, Guizhou. Ph. D. Dissertation. Changsha:Central South University, 1-149 (in Chinese)

    [16]

    John SG, Rouxel OJ, Craddock PR, Engwall AM and Boyle EA. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269(1-2):17-28

    [17]

    Kelley KD, Wikinson JJ, Chapman JB, Crowther HL and Weiss DJ. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, Northern Alaska. Economic Geology, 104(6):767-773

    [18]

    Kou LL, Zhang S and Zhong KH. 2015. Geochemical differences between Daliangzi and Tianbaoshan lead-zinc deposits in Huili-Huidong area, Sichuan, China:Tectonic implication. Geology and Resources, 24(1):26-32 (in Chinese with English abstract)

    [19]

    Li FY. 2003. Study on occurrence state and enrichment mechanism of dispersed elements in MVT deposites:A case study for the Tianbaoshan and Daliangzi Pb-Zn deposits in Sichuan Province. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-69 (in Chinese with English summary)

    [20]

    Li SZ, Zhu XK, Tang SH, He XX and Cai JJ. 2008. The application of MC-ICP-MS to high-precision measurement of Zn isotope ratios. Acta Petrologica et Mineralogica, 27(4):273-278 (in Chinese with English abstract)

    [21]

    Li WB, Huang ZL, Wang YX, Chen J, Han RS, Xu C, Guan T and Yin MD. 2004. Age of the giant Huize Zn-Pb deposits determined by Sm-Nd dating of hydrothermal calcite. Geological Review, 50(2):189-195 (in Chinese with English abstract)

    [22]

    Li WB, Huang ZL and Zhang G. 2006. Sources of the ore metals of the Huize ore field in Yunnan Province:Constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrologica Sinica, 22(10):2567-2580 (in Chinese with English abstract)

    [23]

    Liu CY and Zhu RX. 2009. Discussion on geodynamic significance of the Emeishan basalts. Earth Science Frontiers, 16(2):52-69 (in Chinese with English abstract)

    [24]

    Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Element Geochemistry. Beijing:Science Press, 1-553 (in Chinese)

    [25]

    Machel HG, Krouse HR and Sassen R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10(4):373-389

    [26]

    Maréchal CN, Télouk P and Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1-4):251-273

    [27]

    Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J and Coles BJ. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4):170-187

    [28]

    Ohmoto H and Goldhaber, MB. 1997. Sulfur and carbon isotopes. In:Barnes HL (ed.). Geochemistry of hydrothermal ore deposits. 3rd Edition. New York:Wiley, 517-611

    [29]

    Pašava J, Tornos F and Chrastny V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7):797-807

    [30]

    Pichat S, Douchet C and Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175ka. Earth and Planetary Science Letters, 210(1-2):167-178

    [31]

    Qiu YMM, Gao S, McNaughton NJ, Groves DI and Ling WL. 2000. First evidence of >3.2Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1):11-14

    [32]

    Sonke JE, Sivry Y, Viers J, Freydier R, Dejonghe L, André L, Aggarwal JK, Fontan F and Dupré B. 2008. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter. Chemical Geology, 252(3-4):145-157

    [33]

    Sun WH, Zhou MF, Yan DP, Li JW and Ma YX. 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Research, 167(1-2):213-236

    [34]

    Tang SH, Zhu XK, Cai JJ, Li SZ, He XX and Wang JH. 2006. Chromatographic separation of Cu, Fe and Zn using AG MP-1 anion exchange resin for isotope determination by MC-ICPMS. Rock and Mineral Analysis, 25(1):5-8 (in Chinese with English abstract)

    [35]

    Tu SY. 2014. The mineralography characteristics and its genetic significance of the Tianbaoshan Pb-Zn deposit in Huili Sichuan. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-62 (in Chinese with English summary)

    [36]

    Veeramani H, Eagling J, Jamieson-Hanes JH, Kong LY, Ptacek CJ and Blowes DW. 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environmental Science & Technology Letters, 2(11):314-319

    [37]

    Wang Q, An YL, Gu XX, Fu SH and Li FY. 2009. Enrichment law of the dispersed elements Gd, Ge and Ga in the Tianbaoshan Pb-Zn deposit, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(4):395-401 (in Chinese with English abstract)

    [38]

    Wang Q. 2013. Sulfur isotope characteristics of Tianbaoshan lead-zinc deposit in Sichuan. Acta Mineralogica Sinica, (S2):168 (in Chinese)

    [39]

    Wang W, Wang F, Chen FK, Zhu XY, Xiao P and Siebel W. 2010. Detrital zircon ages and Hf-Nd isotopic composition of Neoproterozoic sedimentary rocks in the Yangtze Block:Constraints on the deposition age and provenance. The Journal of Geology, 118(1):79-94

    [40]

    Wang W, Zhou MF, Yan DP and Li JW. 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research, 192-195:107-124

    [41]

    Wang XC. 1990. Discussion on the ore-forming physicochemical conditions of Tianbaoshan lead-zinc deposit in Sichuan. Acta Geologica Sichuan, 10(1):34-42 (in Chinese)

    [42]

    Wang XC. 1992. Genesis analysis of the Tianbaoshan Pb-Zn deposit. Journal of Chengdu College of Geology, 19(3):10-20 (in Chinese)

    [43]

    Wang XC, Zhang ZR, Zheng MH and Xu XH. 2000. Metallogenic mechanism of the Tianbaoshan Pb-Zn deposit, Sichuan. Chinese Journal of Geochemistry, 19(2):121-133

    [44]

    Wang Y and Zhu XK. 2010. Application of Zn isotopes to study of mineral deposits:A review. Mineral Deposits, 29(5):843-852 (in Chinese with English abstract)

    [45]

    Wen HJ, Zhu CW, Zhang XY, Cloquet C, Fan HF and Fu SH. 2016. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Scientific Reports, 6:25273

    [46]

    Wilkinson JJ, Weiss DJ, Mason TFD and Coles BJ. 2005. Zinc isotope variation in hydrothermal systems:Preliminary evidence from the Irish Midlands ore field. Economic Geology, 100(3):583-590

    [47]

    Yu L. 2014. Brief study on the fluid inclusion characteristics and its genetic significance of Tianbaoshan Pb-Zn deposit in Huili County, Sichuan Province. Master Degree Thesis. Chengdu:Chengdu University of Technology, 1-67 (in Chinese with English summary)

    [48]

    Zhang CQ. 2005. Distribution, characteristics and genesis of Missippi Valley-type lead-zinc deposits in the triangle area of Sichuan-Yunnan-Guizhou provinces. Master Degree Thesis. Beijing:China University of Geosciences, 1-101 (in Chinese)

    [49]

    Zhang TG, Chu XL, Zhang QR, Feng LJ and Huo WG. 2004. The sulfur and carbon isotopic records in carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica, 20(3):717-724 (in Chinese with English abstract)

    [50]

    Zhang ZB, Li CY, Tu GC, Xia B and Wei ZQ. 2006. Geotectonic evolution background and ore-forming process of Pb-Zn deposits in Chuan-Dian-Qian area of Southwest China. Geotectonica et Metallogenia, 30(3):343-354 (in Chinese with English abstract)

    [51]

    Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2):57-69

    [52]

    Zheng MH and Wang XC. 1991. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan, China. Economic Geology, 86(4):831-846

    [53]

    Zhou JX. 2011. Geochemistry of dispersed elements and zinc isotope in carbonate-hosted lead-zinc ore deposits district, Northwest Guizhou Province, China. Ph. D. Dissertation. Beijing:Graduate school of the Chinese Academy of Sciences, 1-153 (in Chinese)

    [54]

    Zhou JX, Gao JG, Chen D and Liu XK. 2013. Ore genesis of the Tianbaoshan carbonate-hosted Pb-Zn deposit, Southwest China:Geologic and isotopic (C-H-O-S-Pb) evidence. International Geology Review, 55(10):1300-1310

    [55]

    Zhou JX, Huang ZL, Zhou MF, Zhu XK and Muchez P. 2014a. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58:41-54

    [56]

    Zhou JX, Huang ZL, Lv ZC, Zhu XK, Gao JG and Mirnejad H. 2014b. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63:209-225

    [57]

    Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2):51-67

    [58]

    Zhu CW, Wen HJ, Zhang YX and Fan HF. 2016. Cadmium and sulfur isotopic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China. Ore Geology Reviews, 76:152-162

    [59]

    冯镜权, 李勇, 刘文周. 2009. 会理天宝山铅锌矿矿床地质特征及控矿条件浅析. 四川地质学报, 29(4):426-430, 434

    [60]

    管士平, 李忠雄. 1999. 康滇地轴东缘铅锌矿床铅硫同位素地球化学研究. 地质地球化学, 27(4):45-54

    [61]

    胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京:科学出版社, 1-903

    [62]

    蒋少涌, 陆建军, 顾连兴, 华仁民, 姜耀辉. 2001. 多接收电感耦合等离子体质谱(MC-ICPMS)测量铜、锌、铁的同位素组成及其地质意义. 矿物岩石地球化学通报, 20(4):431-433

    [63]

    金中国. 2006. 黔西北地区铅锌矿控矿因素、成矿规律与找矿预测研究. 博士学位论文. 长沙:中南大学, 1-149

    [64]

    寇林林, 张森, 钟康惠. 2015. 四川大梁子和天宝山铅锌矿床地球化学差异及地质意义. 地质与资源, 24(1):26-32

    [65]

    李发源. 2003. MVT铅锌矿床中分散元素赋存状态和富集机理研究——以四川天宝山、大梁子铅锌矿床为例. 硕士学位论文. 成都:成都理工大学, 1-69

    [66]

    李世珍, 朱祥坤, 唐索寒, 何学贤, 蔡俊军. 2008. 多接收器等离子体质谱法Zn同位素比值的高精度测定. 岩石矿物学杂志, 27(4):273-278

    [67]

    李文博, 黄智龙, 王银喜, 陈进, 韩润生, 许成, 管涛, 尹牡丹. 2004. 会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义. 地质论评, 50(2):189-195

    [68]

    李文博, 黄智龙, 张冠. 2006. 云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约. 岩石学报, 22(10):2567-2580

    [69]

    刘成英, 朱日祥. 2009. 试论峨眉山玄武岩的地球动力学含义. 地学前缘, 16(2):52-69

    [70]

    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京:科学出版社, 1-553

    [71]

    唐索寒, 朱祥坤, 蔡俊军, 李世珍, 何学贤, 王进辉. 2006. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 25(1):5-8

    [72]

    涂首业. 2014. 四川会理天宝山铅锌矿矿相学特征及意义. 硕士学位论文. 成都:成都理工大学, 1-62

    [73]

    王乾, 安匀玲, 顾雪祥, 付绍洪, 李发源. 2009. 四川天宝山铅锌矿床分散元素镉锗镓富集规律. 成都理工大学学报(自然科学版), 36(4):395-401

    [74]

    王乾. 2013. 四川天宝山铅锌矿床硫同位素特征研究. 矿物学报, (S2):168

    [75]

    王小春. 1990. 论四川天宝山铅锌矿床的成矿物理化学条件. 四川地质学报, 10(1):34-42

    [76]

    王小春. 1992. 天宝山铅锌矿床成因分析. 成都地质学院学报, 19(3):10-20

    [77]

    王跃, 朱祥坤. 2010. 锌同位素在矿床学中的应用:认识与进展. 矿床地质, 29(5):843-852

    [78]

    喻磊. 2014. 四川会理天宝山铅锌矿床流体包裹体特征及其成因意义. 硕士学位论文. 成都:成都理工大学, 1-67

    [79]

    张长青. 2005. 川滇黔地区MVT铅锌矿床分布、特征及成因研究. 硕士学位论文. 北京:中国地质大学, 1-101

    [80]

    张同钢, 储雪蕾, 张启锐, 冯连君, 霍卫国. 2004. 扬子地台灯影组碳酸盐岩中的硫和碳同位素记录. 岩石学报, 20(3):717-724

    [81]

    张志斌, 李朝阳, 涂光炽, 夏斌, 韦振权. 2006. 川、滇、黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用. 大地构造与成矿学, 30(3):343-354

    [82]

    周家喜. 2011. 黔西北铅锌成矿区分散元素及锌同位素地球化学. 博士学位论文. 北京:中国科学院研究生院, 1-153

  • 加载中
计量
  • 文章访问数:  5608
  • PDF下载数:  5324
  • 施引文献:  0
出版历程
收稿日期:  2016-04-25
修回日期:  2016-08-16
刊出日期:  2016-11-30

目录