秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究

陈雷, 王宗起, 闫臻, 吴发富, 任涛, 郭延辉. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014, 30(2): 415-436.
引用本文: 陈雷, 王宗起, 闫臻, 吴发富, 任涛, 郭延辉. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014, 30(2): 415-436.
CHEN Lei, WANG ZongQi, YAN Zhen, WU FaFu, REN Tao, GUO YanHui. Metallogenesis of 150~140Ma porphyry-skarn CuMoFe(Au) deposit in Shanyang-zhashui ore concentration area, Qinling[J]. Acta Petrologica Sinica, 2014, 30(2): 415-436.
Citation: CHEN Lei, WANG ZongQi, YAN Zhen, WU FaFu, REN Tao, GUO YanHui. Metallogenesis of 150~140Ma porphyry-skarn CuMoFe(Au) deposit in Shanyang-zhashui ore concentration area, Qinling[J]. Acta Petrologica Sinica, 2014, 30(2): 415-436.

秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究

  • 基金项目:

    本文受国家科技支撑计划课题(2011BAB04B05、2006BAB01A11)和国家自然科学基金项目(41172178、40772137、41202056)联合资助.

Metallogenesis of 150~140Ma porphyry-skarn CuMoFe(Au) deposit in Shanyang-zhashui ore concentration area, Qinling

  • 秦岭造山带内的山阳-柞水古生代弧前盆地中出露有池沟、小河口、冷水沟、园子街、下官坊及双元沟等CuMo、CuFe(Au)矿床,与这些矿床具有成因联系的岩体为形成于150~140Ma的高钾钙碱性和钾玄岩系列花岗岩,为华北和扬子大陆碰撞后伸展阶段壳、幔混合岩浆的产物。矿化主要发生在岩体与泥盆、石炭纪地层中碳酸盐岩的接触带附近,主要类型为矽卡岩型,少量为斑岩型,部分矿床具有统一的矽卡岩-斑岩型成矿系统,矿化组合主要为CuMo、CuFe(Au)和Cu矿化。外接触带主要发育有矽卡岩和角岩化蚀变,内接触带主要为岩体内部的硅化、钾化、绢云母化、绿泥石化及粘土化,内矽卡岩不发育。矽卡岩矿物主要有石榴石、透辉石、绿帘石、透闪石,阳起石等,其中石榴子石主要为钙铁榴石和钙铝榴石,透辉石是辉石的主体,早期形成的石榴石和透辉石等无水矿物组合常被后期的绿帘石、透闪石和阳起石等含水矿物及石英、方解石等所交代。金属矿物比较简单,最主要的含铜矿物为黄铜矿和斑铜矿,铁矿化主要为磁铁矿和镜铁矿。尽管这些矿床以矽卡岩型矿化为主,但部分矿床中已发现有斑岩型矿化和蚀变特征,这可能暗示了该区可能具有统一的矽卡岩-斑岩型成矿系统,进而表明山阳-柞水矿集区深部具有寻找斑岩型矿床的巨大潜力。
  • 加载中
  • [1]

    Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55

    [2]

    Chen L, Qin KZ, Li GM, Li JX, Xiao B, Jiang HZ, Zhao JX, Fan X and Jiang SY. 2012. Geological and skarn minerals characteristics of Nuri Cu-W-Mo deposit in southeast Gangdese, Tibet. Mineral Deposit, 31(3): 417-437 (in Chinese with English abstract)

    [3]

    Chen L, Yan Z, Wang ZQ, Wu FF, Wang RT, Ren T, Guo YH and Wang P. 2014. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang-Zhashui ore concentration area: An indicator for the magmatic nature and metallogenesis. Acta Geologica Sinica, 88(1): 109-133 (in Chinese with English abstract)

    [4]

    Duanmu HS. 2000. The conglomerates controlled by synsedimentary faults of the devonian in the Fengxian-Shanyang, Shaanxi Province. Journal of Palaeogeography, 2(3): 92-98 (in Chinese with English abstract)

    [5]

    Einaudi MT and Burt DM. 1982. Introduction; Terminology, classification, and composition of skarn deposits. Economic Geology, 77(4): 745-754

    [6]

    Fang WX and Hu RZ. 2001. Key controls of Devonian three order hydrothermal sedmentary basin with mineralization in the Qinling Orogen, China: Research on accumulational district of large-superlarge ore deposits. Geotectonica et Metallogenia, 25(1): 27-35 (in Chinese with English abstract)

    [7]

    Feng CY, Zhao YM, Li DX, Liu JN, Xiao Y, Li GC and Ma SC. 2011. Skarn types and mineralogical characteristics of the Fe-Cu-polymetallic skarn deposits in the Qimantage area, western Qinghai Province. Acta Geologica Sinica, 85(7): 1108-1115 (in Chinese with English abstract)

    [8]

    Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett., 220(1-2): 139-155

    [9]

    Hou ZQ, Gao YF, Meng XJ, Qu XM and Huang W. 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract)

    [10]

    Ishiahara S. 1981. The granitoid series and mineralization. 75th Anniv. Vol., Economic Geology, 458-484

    [11]

    Krner A, Zhang GW and Sun Y. 1993. Granulites in the Tongbai area, Qinling belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of Eastern Asia. Tectonics, 12(1): 245-255

    [12]

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin BA. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

    [13]

    Leake BE, Woolley AR, Arps CES et al. 1997. Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9-10): 1019-1037

    [14]

    Li GM, Qin KZ, Ding KS, Liu TB, Li JX, Wang SH, Jiang SY Lin JD, Jiang HZ, Fang SY and Zhang XC. 2006. Geology and mineral assemblage of Tertiary skarn Cu-Au±Mo deposits in the southeastern Gangdese arc: Implications for deep exploration. Acta Geologica Sinica, 80(9): 1407-1421 (in Chinese with English abstract)

    [15]

    Luo DZ. 1995. The metallogenic characteristics of copper deposit in intermediate acid intrusive in the Lengshuigou-Xiaguangfang district, Shaanxi Province. Henan Geology, 13(2): 91-94 (in Chinese with English abstract)

    [16]

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geology Society of America Bulletin, 101(5): 635-643

    [17]

    Mattauer M, Matte P, Malavielle J, Tapponnier P, Maluski H, Xu ZQ, Lu YL and Tang YQ. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496-500

    [18]

    Meinert LD, Dipple GM and Nicolescu S. 2005. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume. Society of Economic Geologists, 299-336

    [19]

    Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183-196

    [20]

    Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81

    [21]

    Qi SJ and Li Y. 1993. The Qinling Devonian System Lead-zinc Metallogenic Belt. Beijing: Geological Publishing House, 1-239 (in Chinese)

    [22]

    Qin KZ and Shunso I. 1998. On the possibility of porphyry copper mineralization in Japan. International Geology Review, 40(6): 539-551

    [23]

    Qin KZ, Li HM, Li WS and Ishihara S. 1998. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China. Geological Review, 45(2): 180-185 (in Chinese with English abstract)

    [24]

    Qin KZ, Tosdal RM, Li GM, Zhang Q and Li JL. 2005. Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. In: Zhao CS and Guo BJ (eds.). Mineral Deposit Research: Meeting the Global Challenge (Volume 3). Beijing: China Land Publishing House, 44-47

    [25]

    Ren T, Wang RT, Wang XY, Xia CL and Guo YH. 2009. A way and method for prospecting copper deposit in the Zhashui-Shanyang sedimentary basin in the Qinling Orogenic Belt. Acta Geologica Sinica, 83(11): 1730-1738(in Chinese with English abstract)

    [26]

    Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250

    [27]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [28]

    Tosdal RM and Richards JP. 2001. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits, Reviews in Economic Geology, 14: 157-181

    [29]

    Wang DS, Wang RT, Dai JZ, Wang CA, Li JH and Chen LX. 2009. "Dual Ore-Controlling Factors" characteristics of metallic deposits in the Qinling Orogenic Belt. Acta Geologica Sinica, 83(11): 1717-1729 (in Chinese with English abstract)

    [30]

    Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract)

    [31]

    Wang ZQ, Wang T, Yan Z and Yan QR. 2002. Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling, Central China. Regional Geology of China, 21(8-9): 456-464 (in Chinese with English abstract)

    [32]

    Wang ZT and Qin KZ. 1988. Types, metallogenic environments and characteristics of temporal and spatial distribution of copper deposits in China. Acta Geologica Sinica, 62(3): 257-267 (in Chinese with English abstract)

    [33]

    Wang ZT, Qin KZ and Zhang SL. 1994. Large Copper Mine Geology and Exploration. Beijing: Metallurgical Industry Press, 1-165 (in Chinese)

    [34]

    Wu FF, Wang ZQ, Yan Z, Chen L, Xia CL, Guo YH and Peng YM. 2014. Geochemical characters, zircon U-Pb ages and Lu-Hf isotopic composition of the intermediate-acidic plutons in the Shanyang-Zhashui area, Qinling orogenic belt. Acta Petrologica Sinica, 30(2): 451-471 (in Chinese with English abstract)

    [35]

    Xie GQ, Ren T, Li JB, Wang RT, Xian CL, Gou YH, Dai JZ and Shen ZC. 2012. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province. Acta Petrologica Sinica, 28(1):15-26 (in Chinese with English abstract)

    [36]

    Yan Z, Wang ZQ, Yan QR, Wang T, Xiao WJ, Li JL, Han FL, Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling orogen: Constraints on Late Paleozoic southward accretionary tectonics of the North China craton. International Geology Review, 48(7): 585-618

    [37]

    Yan Z, Wang ZQ, Wang T, Yan QR, Xiao WJ, Li JL, Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen: Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica, 23(5): 1023-1042 (in Chinese with English abstract)

    [38]

    Yan Z, Wang ZQ, Yan QR, Wang T and Guo XQ. 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling Orogenic Belt. Journal of Sedimentary Research, 82(1): 9-20

    [39]

    Zhang BR, Chen DX, Li ZJ, Gu XM, Jiang JY, Hu YK, Li FL, Guo WY and Li YC. 1989. Region Geochemistry of Shanyang-Zhashui Metallogenic Belt, Shaanxi Province. Wuhan: Press of China University of Geosciences, 1-221 (in Chinese)

    [40]

    Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese)

    [41]

    Zhang YL. 2002. Geological features and the metallogenetic conditions of acid-intermediate acid small rock bodies in Xiaohekou area of Shanyang County, Shaanxi Province. Geology of Shaanxi, 20(2): 27-38 (in Chinese with English abstract)

    [42]

    Zhao YM, Lin WW, Bi CS, Li DX and Jiang CJ. 1990. Skarn Deposits of China. Beijing: Geol. Pub. House, 1-347 (in Chinese)

    [43]

    Zhao YM and Li DX. 2003. Amphiboles in skarn deposits of China. Mineral Deposits, 22(4): 345-359 (in Chinese with English abstract)

    [44]

    Zhu HP and Qi SJ. 1997. Copper ore prospecting breakthrough in Shangzha area of Shaanxi Province. Northwestern Geology, 18(1): 18-21 (in Chinese)

    [45]

    Zhu HP, Ye L, Gan BX and Wang CQ. 2003. The relationship to basin constructure system with metallgenic in Shan (yang)-Zha (shui)-Zhen (an)-Xun (yang) area. Northwestern Geology, 36(1): 52-58 (in Chinese with English abstract)

    [46]

    陈雷, 秦克章, 李光明, 李金祥, 肖波, 江化寨, 赵俊兴, 范新, 江善元. 2012. 西藏冈底斯南缘努日铜钨钼矿床地质特征与矽卡岩矿物学研究. 矿床地质, 31(3): 417-437

    [47]

    陈雷, 闫臻, 王宗起, 吴发富, 王瑞廷, 任涛, 郭延辉, 王鹏. 2014. 陕西山阳:柞水矿集区燕山期岩体矿物学特征: 对岩浆性质及成矿作用的指示. 地质学报, 88(1): 109-133

    [48]

    端木合顺. 2000. 陕西凤县-山阳泥盆系同沉积断裂砾岩. 古地理学报, 2(3): 92-98

    [49]

    方维萱, 胡瑞忠. 2001. 秦岭造山带泥盆纪三级构造热水沉积成矿盆地主控因素——大型-超大型矿床集中区研究. 大地构造与成矿学, 25(1): 27-35

    [50]

    丰成友, 赵一鸣, 李大新, 刘建楠, 肖晔, 李国臣, 马圣钞. 2011. 青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征. 地质学报, 85(7): 1108-1115

    [51]

    侯增谦, 高永丰, 孟祥金, 曲晓明, 黄卫. 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248

    [52]

    李光明, 秦克章, 丁奎首, 李金祥, 王少怀, 江善元, 林金灯, 江化寨, 方树元, 张兴春. 2006. 冈底斯东段南部第三纪夕卡岩型Cu-Au±Mo矿床地质特征、矿物组合及其深部找矿意义. 地质学报, 80(9): 1407-1421

    [53]

    罗德正. 1995. 陕西冷水沟-下官房一带中酸性侵入体成铜特征. 河南地质, 13(2): 91-94

    [54]

    祈思敬, 李英. 1993. 秦岭泥盆系铅锌成矿带. 北京: 地质出版社, 1-239

    [55]

    秦克章, 李惠民, 李伟实, Ishihara S. 1999. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代. 地质论评, 45(2): 180-185

    [56]

    任涛, 王瑞廷, 王向阳, 夏长玲, 郭延辉. 2009. 秦岭造山带柞水-山阳沉积盆地铜矿勘查思路与方法. 地质学报, 83(11): 1730-1738

    [57]

    王东生, 王瑞廷, 代军治, 王长安, 李建华, 陈荔湘. 2009. 秦岭造山带金属矿床的"二元控矿"特征. 地质学报, 83(11): 1717-1729

    [58]

    王宗起, 王涛, 闫臻, 闫全人. 2002. 秦岭晚古生代弧前增生的背驮型盆地体系. 地质通报, 21(8-9): 456-464

    [59]

    王宗起, 闫全人, 闫臻, 王涛, 姜春发, 高联达, 李秋根, 陈隽璐, 张英利, 刘平, 谢春林, 向忠金. 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, 83(11): 1527-1546

    [60]

    王之田, 秦克章. 1988. 中国铜矿床类型、成矿环境及其时空分布特点. 地质学报, 62(3): 257-267

    [61]

    王之田, 秦克章, 张守林. 1994. 大型铜矿地质与勘探. 北京: 冶金工业出版社, 1-165

    [62]

    吴发富, 王宗起, 闫臻, 陈雷, 夏长玲, 郭延辉, 彭远民. 2014. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成. 岩石学报, 30(2): 451-471

    [63]

    谢桂青, 任涛, 李剑斌, 王瑞廷, 夏长玲, 郭延辉, 代军治, 申志超. 2012. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因. 岩石学报, 28(1): 15-26

    [64]

    闫臻, 王宗起, 王涛, 闫全人, 肖文交, 李继亮, 韩芳林, 陈隽璐. 2007. 秦岭造山带泥盆系形成构造环境: 来自碎屑岩组成和地球化学方面的约束. 岩石学报, 23(5): 1023-1042

    [65]

    张本仁, 陈德兴, 李泽九, 谷晓明, 蒋敬业, 胡以铿, 李方林, 郭五寅, 李耀成. 1989. 陕西柞水山阳成矿带区域地球化学. 武汉:中国地质大学出版社, 1-221

    [66]

    张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855

    [67]

    张银龙. 2002. 陕西省山阳县小河口地区酸性-中酸性岩体地质特征及其成矿地质条件分析. 陕西地质, 20(2): 27-38

    [68]

    赵一鸣, 林文蔚, 毕承思, 李大新, 蒋崇俊. 1990. 中国矽卡岩矿床. 北京: 地质出版社, 1-347

    [69]

    赵一鸣, 李大新. 2003. 中国夕卡岩矿床中的角闪石. 矿床地质, 22(4): 345-359

    [70]

    朱华平, 祁思敬. 1997. 陕西柞山地区铜矿找矿突破口的选择. 西北地质, 18(1): 18-21

    [71]

    朱华平, 叶磊, 甘宝新, 汪长青. 2003. 山柞镇旬地区盆地体制与金属成矿关系. 西北地质, 36(1): 52-58

  • 加载中
计量
  • 文章访问数:  7779
  • PDF下载数:  7392
  • 施引文献:  0
出版历程
收稿日期:  2013-04-02
修回日期:  2013-07-17
刊出日期:  2014-02-28

目录