内蒙古营盘湾-东五分子一带的色尔腾山岩群的厘定及地质意义

吴新伟, 徐仲元. 内蒙古营盘湾-东五分子一带的色尔腾山岩群的厘定及地质意义[J]. 岩石学报, 2016, 32(9): 2901-2911.
引用本文: 吴新伟, 徐仲元. 内蒙古营盘湾-东五分子一带的色尔腾山岩群的厘定及地质意义[J]. 岩石学报, 2016, 32(9): 2901-2911.
WU XinWei, XU ZhongYuan. Sertengshan Group in Yingpanwan-Dongwufenzi aera, Inner Mongolia: Revision and its geological significance[J]. Acta Petrologica Sinica, 2016, 32(9): 2901-2911.
Citation: WU XinWei, XU ZhongYuan. Sertengshan Group in Yingpanwan-Dongwufenzi aera, Inner Mongolia: Revision and its geological significance[J]. Acta Petrologica Sinica, 2016, 32(9): 2901-2911.

内蒙古营盘湾-东五分子一带的色尔腾山岩群的厘定及地质意义

  • 基金项目:

    本文受国家自然科学基金项目(41272223、41402169)和中国地质调查局项目(1212011120709)联合资助.

详细信息

Sertengshan Group in Yingpanwan-Dongwufenzi aera, Inner Mongolia: Revision and its geological significance

More Information
  • 色尔腾山岩群是华北克拉通西部陆块阴山地块早前寒武纪变质基底的主要组成部分,对探讨华北克拉通早前寒武纪基底构造演化有着十分重要的意义。本文根据对营盘湾-东五分子一带的色尔腾山岩群的地质填图、剖面测量、地球化学分析和SHRIMP测年,对色尔腾山岩群的组成、原岩建造、形成环境和形成时代进行了讨论。认为色尔腾山岩群由陈三沟岩组、柳树沟岩组和东五分子岩组组成,陈三沟岩组由灰黑色细粒斜长角闪岩、浅灰色细粒黑云斜长片麻岩夹角闪斜长片麻岩组成;东五分子岩组下段由细粒含石英黑云斜长角闪岩、黑云角闪斜长片麻岩、黑云斜长片麻岩呈韵律产出,顶部为灰白色细粒黑云斜长片麻岩夹薄层磁铁黑云斜长片麻岩,上段为由细粒黑云角闪片岩与浅肉红色黑云长英片麻岩互层,顶部有薄层白色透闪石大理岩;柳树沟岩组以角闪片岩、二云母片岩、二云石英片岩、石榴黑云片岩、黑云母片岩为特征。其原岩总体构成表现为:下部以火山岩为主,上部以碎屑沉积岩和化学沉积岩为主的火山-碎屑沉积建造。火山岩明显富碱,其中酸性火山岩明显富铝、贫镁;具有较高的大离子亲石元素含量、较低的Y和重稀土元素含量;具有轻稀土富集、重稀土亏损的稀土分布形式。地球化学特征与埃达克岩类似,形成于活动大陆边缘的构造环境下。通过对东五分子岩组上部互层产出的细粒长英片麻岩和黑云母片岩分别取样,进行锆石U-Pb SHRIMP测年,分别获得1980±9Ma、1946±16Ma的成岩年龄和1901±15Ma、1893±66Ma的变质年龄。综上所述可以得出,色尔腾山岩群的形成于1.95~1.98Ga之间,是在类似埃达克岩的活动大陆边缘岛弧环境下沉积的,在1.9Ga左右发生碰撞造山而发生变质。
  • 加载中
  • [1]

    Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170

    [2]

    Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114

    [3]

    Cawood PA. 2006. Precambrian plate tectonics: Criteria and evidence. GSA Today, 16(7): 4-11

    [4]

    Chen L. 2007. Geochemistry and chronology of the Guyang greenstone belt. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-40 (in Chinese)

    [5]

    Chen YP, Wei CJ, Zhang JR and Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19): 1698-1707

    [6]

    Chen ZY, Zheng FS, Wang Z, Li SW and Wang FK. 2007. The Sertengshan rock group in middle-west Inner Mongolia: Revision and its geological significance. Geology and Resources, 16(1): 1-6, 41 (in Chinese with English abstract)

    [7]

    Cumming GL and Richarda JR. 1975. Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters, 28(2): 155-171

    [8]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [9]

    Gou LL, Zhang CL and Wang Q. 2015. Petrological evidence for isobaric cooling of ultrahightemperature pelitic granulites from the Khondalite Belt, North China Craton. Science Bulletin, 60(17): 1535-1542

    [10]

    Jian P, Zhang Q and Liu DY. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151-157 (in Chinese with English abstract)

    [11]

    Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica, 7(4): 27-35 (in Chinese with English abstract)

    [12]

    Li JC, Zhao AL, Wang L, Cui KY and Jin CZ. 2004. Disintegration of Seertengshan group and characteristics of the protolith. Northwestern Geology, 37(1): 74-80 (in Chinese with English abstract)

    [13]

    Liu L, Zhang LC, Dai YP, Wang CL and Li ZQ. 2012. Formation age, geochemical signatures and geological significance of the Sanheming BIF-type iron deposit in the Guyang greenstone belt, Inner Mongolia. Acta Petrologica Sinica, 28(11): 3623-3637 (in Chinese with English abstract)

    [14]

    Liu XS, Jin W, Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499-510

    [15]

    Ludwig KR. 2001. Squid 1.02: A User's Manual. Berkeley: Berkeley Geochronology Centre Special Publication, 2: 19

    [16]

    Ma XD, Guo JH, Chen L and Chu ZY. 2010. Re-Os isotopic constraint to the age of in komatiites in the Neoarchean Guyang greenstone belt, North China Craton. Chinese Science Bulletin, 55(27): 3197-3204

    [17]

    Ma XD, Fan HR and Guo JH. 2013. Neoarchean magmatism, metamorphism in the Yinshan Block: Implication for the genesis of BIF and crustal evolution. Acta Petrologica Sinica, 29(7): 2329-2339 (in Chinese with English abstract)

    [18]

    Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dorr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Gotze J, Hager T, Kroner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon, Geostandards and Geoanalytical Research, 32(03): 247-365

    [19]

    Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659

    [20]

    Peng P, Guo JH, Windley BF and Li XH. 2011. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Research, 187(1-2): 165-180

    [21]

    Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266

    [22]

    Santosh M, Tsunogae T, Li JH and Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285

    [23]

    Santosh M, Wilde SA and Li JH. 2007b. Timing of Palaeoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 2007, 159(3-4): 178-196

    [24]

    Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149-167

    [25]

    Santosh M and Kusky T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova, 22(1): 35-42

    [26]

    Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106

    [27]

    Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study. Precambrian Research, 227: 29-54

    [28]

    Shen QH. 2008. Further discussion on the new progress in the study of Early Precambrian stratigraphy of China. Journal of Stratigraphy, 32(3): 231-238 (in Chinese with English abstract)

    [29]

    Stern RJ. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7): 557-560

    [30]

    Stephen FF, Stephan B and Dorrit EJ. 2003. Evolution of the Archaean crust by delamination and shallow subduction. Nature, 421: 249-252

    [31]

    Wan YS, Liu DY, Xu ZY and Wu JJ. 2008. Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. American Journal of Science, 308(3):351-378

    [32]

    Wan YS, Dong CY, Xie HQ, Wang SJ, Song MC, Xu ZY, Wang SY, Zhou HY, Ma MZ and Liu DY. 2012. Formation ages of Early Precambrian BIFs in the north China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447-1478 (in Chinese with English abstract)

    [33]

    Wang J, Lu SN, Li HM, Wang RZ, Sun YF, Li HK and Li SQ. 1995. Geochronologic framework of metamorphic rocks in the middlepart of Inner Mongolia. Bulletin Tianjin Institute Geol. Min. Res., (29): 1-71 (in Chinese with English abstract)

    [34]

    Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC and Ridley WI (ed.). Applications of Microanalytical Techniques to Understanding Mineralising Processes. Colorado: Society of Economic Geologists, 7: 1-35

    [35]

    Wu CH, Sun M, Li HM, Zhao GC and Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639-2654 (in Chinese with English abstract)

    [36]

    Xia XP, Sun M, Zhao GC and Luo Y. 2006. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212

    [37]

    Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang J and He YH. 2008. Paleoproterozoic crustal growth in the western block of the North China craton: Evidence from detrital zircon Hf and whole rock Sr-Nd isotopic compositions of the khondalites from the Jining complex. American Journal of Sciences, 308(3): 304-327

    [38]

    Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122(1-4): 183-199

    [39]

    Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547-561

    [40]

    Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)

    [41]

    Zhang WJ, Li L and Geng MS. 2000. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mongolia. Earth Science, 25(3): 221-226 (in Chinese with English abstract)

    [42]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [43]

    Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8):1772-1792 (in Chinese with English abstract)

    [44]

    陈亮. 2007. 固阳绿岩带的地球化学和年代学. 博士后研究报告. 北京: 中国科学院地质与地球物理研究所, 1-40

    [45]

    陈志勇, 郑翻身, 王忠, 李四娃, 王富宽. 2007. 内蒙古中西部色尔腾山岩群的厘定及其地质意义. 地质与资源, 16(1): 1-6, 41

    [46]

    简平, 张旗, 刘敦一. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151-157

    [47]

    金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35

    [48]

    李景春, 赵爱林, 王力, 崔克英, 金成洙. 2004. "色尔腾山群"的解体及其原岩特征. 西北地质, 37(1): 74-80

    [49]

    刘利, 张连昌, 代堰锫, 王长乐, 李智泉. 2012. 李智泉内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义. 岩石学报, 28(11): 3623-3637

    [50]

    马旭东, 郭敬辉, 陈亮, 储著银. 2010. 内蒙固阳晚太古代绿岩带中科马提岩的Re-Os同位素研究. 科学通报, 55(19): 1900-1907

    [51]

    马旭东, 范宏瑞, 郭敬辉. 2013. 阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示. 岩石学报, 29(7): 2329-2339

    [52]

    沈其韩. 2008. 再论我国早前寒武纪地层研究的新进展. 地层学杂志, 32(3): 231-238

    [53]

    万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年. 地质学报, 86(9): 1447-1478

    [54]

    王楫, 陆松年, 李惠民, 王汝铮, 孙玉芳, 李怀坤, 李双庆. 1995. 内蒙古中部变质岩同位素年代构造格架. 中国地质科学院天津地质矿产研究所所刊, (29): 1-71

    [55]

    吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究. 岩石学报, 22(11): 2639-2654

    [56]

    翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682

    [57]

    张维杰, 李龙, 耿明山. 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学, 25(3): 221-226

    [58]

    赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792

  • 加载中
计量
  • 文章访问数:  5730
  • PDF下载数:  4806
  • 施引文献:  0
出版历程
收稿日期:  2016-04-01
修回日期:  2016-07-24
刊出日期:  2016-09-30

目录