还原性斑岩型Cu与Mo-Cu矿特征与形成机制

吴楚, 刘妍, 曹明坚, 洪涛, 徐兴旺, 董连慧. 还原性斑岩型Cu与Mo-Cu矿特征与形成机制[J]. 岩石学报, 2015, 31(2): 617-638.
引用本文: 吴楚, 刘妍, 曹明坚, 洪涛, 徐兴旺, 董连慧. 还原性斑岩型Cu与Mo-Cu矿特征与形成机制[J]. 岩石学报, 2015, 31(2): 617-638.
WU Chu, LIU Yan, CAO MingJian, HONG Tao, XU XingWang, DONG LianHui. Characteristics and formation mechanism of reduced porphyry Cu and Mo-Cu deposits[J]. Acta Petrologica Sinica, 2015, 31(2): 617-638.
Citation: WU Chu, LIU Yan, CAO MingJian, HONG Tao, XU XingWang, DONG LianHui. Characteristics and formation mechanism of reduced porphyry Cu and Mo-Cu deposits[J]. Acta Petrologica Sinica, 2015, 31(2): 617-638.

还原性斑岩型Cu与Mo-Cu矿特征与形成机制

  • 基金项目:

    本文受新疆维吾尔自治区地质矿产勘查局自筹资金项目(XGMB2013007)、中国科学院知识创新工程主要方向项目(KZCX-EW-LY03)和国家自然科学基金项目(41072060)联合资助.

详细信息

Characteristics and formation mechanism of reduced porphyry Cu and Mo-Cu deposits

More Information
  • 还原性斑岩型Cu矿是近年新识别的一类斑岩型矿床,以岩浆阶段发育大量磁黄铁矿和成矿流体富CH4为主要特征。成因上,还原性斑岩型Cu矿与钛铁矿系列I型花岗岩伴生,形成于俯冲环境或者后碰撞环境。成矿流体为岩浆流体。岩浆阶段磁黄铁矿的结晶沉淀将导致岩浆中成矿元素Cu进入硫化物相而贫化,不利于成矿元素在流体中富集,结果导致还原性斑岩型Cu矿的矿化和蚀变规模较小。对比研究发现西准噶尔宏远Mo-Cu矿也具有还原性斑岩型矿床的特征,可能为还原性斑岩型矿床的新类型。
  • 加载中
  • [1]

    Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ and Stevens CM. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chemical Geology, 71(1-3): 211-222

    [2]

    Ague JJ and Brimhall GH. 1987. Granites of the batholiths of California: Products of local assimilation and regional-scale crustal contamination. Geology, 15(1): 63-66

    [3]

    Ague JJ and Brimhall GH. 1988a. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. The Geological Society of America Bulletin, 100(6): 891-911

    [4]

    Ague JJ and Brimhall GH. 1988b. Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. The Geological Society of America Bulletin, 100(6): 912-927

    [5]

    Andersen T and Burke EAJ. 1996. Methane inclusions in shocked quartz from the Gardnos impact breccia, South Norway. European Journal of Mineralogy, 8(5): 927-936

    [6]

    Audétat A, Günther D and Heinrich AC. 2000. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the mole granite, Australia. Economic Geology, 95(8): 1563-1581

    [7]

    Audétat A, Pettke T and Dolejš D. 2004. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): Genetic constraints on porphyry-Cu mineralization. Lithos, 72(3-4): 147-161

    [8]

    Bacon CR. 1989. Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochimica et Cosmochimica Acta, 53(5): 1055-1066

    [9]

    Baker DR and Moretti R. 2011. Modeling the solubility of sulfur in magmas: A 50-year old geochemical challenge. Reviews in Mineralogy and Geochemistry, 73(1): 167-213

    [10]

    Ballhaus C, Berry RF and Green DH. 1990. Oxygen fugacity controls in the Earth\'s upper mantle. Nature, 348(6300): 437-440

    [11]

    Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology, 114(3): 331-348

    [12]

    Barr DA, Fox PE, Northcote KE and Preto VA. 1976. The alkaline suite porphyry deposits: A summary. In: Sutherland Brown A (ed.). Porphyry Deposits of the Canadian Cordillera. Canadian Institute of Mining Metallurgy and Petroleum Special Volume, 15: 359-367

    [13]

    Beeskow B, Treloar PJ, Rankin AH, Vennemann TW and Spangenberg J. 2006. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia. Lithos, 91(1-4): 1-18

    [14]

    Behrens H and Gaillard F. 2006. Geochemical aspects of melts: Volatiles and redox behavior. Elements, 2(5): 275-280

    [15]

    Berndt ME, Allen DE and Seyfried WE. 1996a. Reduction of CO2 during serpentinization of olivine at 300℃ and 500bar. Geology, 24(4): 351-354

    [16]

    Blevin PL and Chappell BW. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Geological Society of America Special Paper, 272: 305-316

    [17]

    Blevin PL. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of Eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54(3): 241-252

    [18]

    Bornhorst TJ and Rose WI Jr. 1986. Partitioning of gold in young calc-alkalic volcanic rocks from Guatemala. The Journal of Geology, 94(3): 412-418

    [19]

    Botcharnikov RE, Koepke J, Holtz F, McCammon C and Wilke M. 2005. The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochimica et Cosmochimica Acta, 69(21): 5071-5085

    [20]

    Brandon AD and Draper DS. 1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749

    [21]

    Burnham CW and Ohmoto H. 1980. Late-stage processes of felsic magmatism. Mining Geology, Special Issue, (8): 1-11

    [22]

    Calagari AA. 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic-phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767-780

    [23]

    Candela PA and Holland HD. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48(2): 373-380

    [24]

    Candela PA. 1989. Felsic magmas, volatiles and metallogenesis. In: Whitney JA and Naldrett AJ (eds.). Ore Deposits Associated with Magmas. Society of Economic Geology. Reviews in Economic Geology, 4: 223-233

    [25]

    Candela PA. 1997. A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619-1633

    [26]

    Cao MJ. 2013. Petrogenesis and metallogenesis of Baogutu reduced porphyry copper deposit, West Junggar, and its comparison with porphyry deposits from Balkhash. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-234 (in Chinese)

    [27]

    Cao MJ, Qin KZ, Li GM, Evans NJ and Jin LY. 2013. Abiogenic fischer-tropsch synthesis of methane at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Mineralogical Magazine, 77: 821

    [28]

    Cao MJ, Qin KZ, Li GM, Jin LY, Evans NJ and Yang XR. 2014a. Baogutu: An example of reduced porphyry Cu deposit in western Junggar. Ore Geology Reviews, 56: 159-180

    [29]

    Cao MJ, Qin KZ, Li GM, Yang YH, Evans NJ, Zhang R and Jin LY. 2014b. Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Journal of Asian Earth Sciences, 82: 136-150

    [30]

    Carmichael ISE and Nicholls J. 1967. Iron-titanium oxides and oxygen fugacities in volcanic rocks. Journal of Geophysical Research, 72(18): 4665-4687

    [31]

    Carmichael ISE and Ghiorso MS. 1986. Oxidation-reduction relations in basic magma: A case for homogeneous equilibria. Earth and Planetary Science Letters, 78(2-3): 200-210

    [32]

    Carmichael ISE. 1991. The redox states of basic and silicic magmas: A reflection of their source regions? Contributions to Mineralogy and Petrology, 106(2): 129-141

    [33]

    Carroll MR and Rutherford MJ. 1985. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research, 90(S02): C601-C612

    [34]

    Carroll MR and Rutherford MJ. 1987. The stability of igneous anhydrite: Experimental results and implications for sulfur behavior in the 1982 El Chichon Trachyandesite and other evolved magmas. Journal of Petrology, 28(5): 781-801

    [35]

    Carroll MR and Rutherford MJ. 1988. Sulfur speciation in hydrous experimental glasses of varying oxidation state: Results from measured wavelength shifts of sulfur X-rays. The American Mineralogist, 73(7-8): 845-849

    [36]

    Carten RB, White WH and Stein HJ. 1993. High-grade granite-related molybdenum systems: Classification and origin. In: Kirkham RV, Sinclair WD, Thorpe RI and Duke JM (eds.). Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40: 521-554

    [37]

    Chen ZG, Zhang LC, Wan B, Zhang YT and Wu HY. 2008. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia. Acta Petrologica Sinica, 24(1): 115-128 (in Chinese with English abstract)

    [38]

    Chen ZG, Zhang LC, Lu BZ, Li ZL, Wu HY, Xiang P and Huang SW. 2010. Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrologica Sinica, 26(5): 1437-1449 (in Chinese with English abstract)

    [39]

    Chu SX, Zeng QD, Liu JM, Zhang WQ, Zhang ZL, Zhang S and Wang ZC. 2010. Characteristics and its geological significance of fluid inclusions in Chehugou porphyry Mo-Cu deposit, Xilamulun molybdenum metallogenic belt. Acta Petrologica Sinica, 26(8): 2465-2481 (in Chinese with English abstract)

    [40]

    Cline JS and Bodnar RJ. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research, 96(B5): 8113-8126

    [41]

    Cloos M. 2001. Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43(4): 285-311

    [42]

    Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200

    [43]

    Cooke DR, Hollings P and Walshe JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818

    [44]

    Core DP, Kesler SE and Essene EJ. 2006. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology, 34(1): 41-44

    [45]

    Davidson P, Kamenetsky V, Cooke DR, Frikken P, Hollings P, Ryan C, Van Achterbergh E, Mernagh TP, Skarmeta J, Serrano L and Vargas R. 2005. Magmatic precursors of hydrothermal fluids at the Rio Blanco Cu-Mo deposit, Chile: Links to silicate magmas and metal transport. Economic Geology, 100(5): 963-978

    [46]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [47]

    Defant MJ and Drummond MS. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550

    [48]

    Des Marais DJ, Stallard ML, Nehring NL and Truesdell AH. 1988. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico. Chemical Geology, 71(1-3): 159-167

    [49]

    Dickenson MP and Hess PC. 1986. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contributions to Mineralogy and Petrology, 92(2): 207-217

    [50]

    Douglas RW, Nath P and Paul A. 1965. Oxygen ion activity and its influence on the redox equilibrium in glasses. Physics and Chemistry of Glasses, 6(6): 216-223

    [51]

    du Bray EA and John DA. 2011. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California. Geosphere, 7(5): 1102-1133

    [52]

    du Bray EA, John DA and Cousens BL. 2014. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada. Geosphere, 10(1): 1-39

    [53]

    Feng XF. 2010. Studies on geological-geochemical characteristics of the Budunhua copper deposit in Xinganmeng, Inner Mongolia. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-73 (in Chinese with English summary)

    [54]

    Fiebig J, Woodland AB, D\'Alessandro W and Püttmann W. 2009. Excess methane in continental hydrothermal emissions is abiogenic. Geology, 37(6): 495-498

    [55]

    Gaillard F, Scaillet B, Pichavant M and Bény JM. 2001. The effect of water and fO2 on the ferric-ferrous ratio of silicic melts. Chemical Geology, 174(1-3): 255-273

    [56]

    Gao WY, Huang F, Li GL, Duan TX, Zeng M, Liu ZY, Liu R, Liu J and Gao S. 2013. The influence of different iron-sulfur ratios on pyrite formation under thermal sulfurization condition. Earth Science Frontiers, 20(3): 131-137 (in Chinese with English abstract)

    [57]

    Gold T. 1979. Terrestrial sources of carbon and earthquake outgassing. Journal of Petroleum Geology, 1(3): 3-19

    [58]

    Guan SJ, Zhang H, Tang Y and Zhang JX. 2011. An experimental study on the partitioning of molybdenum and tungsten between granitic melt and coexisting aqueous fluid at 100MPa and 800℃. Geochimica, 40(6): 516-524 (in Chinese with English abstract)

    [59]

    Guo S, Ye K, Chen Y, Liu JB and Mao Q. 2013. Ultrahigh-pressure lawsonite breakdown in the Dabieshan eclogite: Constrains on the fluid actions in deep subduction zone. Chinese Science Bulletin, 58(22): 2186-2191 (in Chinese)

    [60]

    Guo ZL, Li JX, Qin KZ, Dong LH, Guo XJ, Tang DM and Du XW. 2010. Zircon U-Pb geochronology and geochemistry of Hanzheganeng Cu-Au deposit in West Junggar, Xinjiang: Implications for magma source and metallogenic tectonic setting. Acta Petrologica Sinica, 26(12): 3563-3578 (in Chinese with English abstract)

  • 加载中
计量
  • 文章访问数:  6703
  • PDF下载数:  6134
  • 施引文献:  0
出版历程
收稿日期:  2014-05-19
修回日期:  2014-12-15
刊出日期:  2015-02-28

目录