大别山双河超高压榴辉岩中变质锆石;离子探针和微区结构研究

陈道公,Etienne DELOULE,夏群科,吴元保,程昊. 大别山双河超高压榴辉岩中变质锆石;离子探针和微区结构研究[J]. 岩石学报, 2002, 18(3): 369-377.
引用本文: 陈道公,Etienne DELOULE,夏群科,吴元保,程昊. 大别山双河超高压榴辉岩中变质锆石;离子探针和微区结构研究[J]. 岩石学报, 2002, 18(3): 369-377.
Chen DG,Deloule E,Xia QK,Wu YB and Cheng H. 2002. 1. Department of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China 2. CRPG CNRS,Nancy 54501,France. Metamorphic zircon from Shuanghe ultra-high pressure eclogite,Dabieshan: ion microprobe and internal micro-structure study.[J]. Acta Petrologica Sinica, 2002, 18(3): 369-377.
Citation: Chen DG,Deloule E,Xia QK,Wu YB and Cheng H. 2002. 1. Department of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China 2. CRPG CNRS,Nancy 54501,France. Metamorphic zircon from Shuanghe ultra-high pressure eclogite,Dabieshan: ion microprobe and internal micro-structure study.[J]. Acta Petrologica Sinica, 2002, 18(3): 369-377.

大别山双河超高压榴辉岩中变质锆石;离子探针和微区结构研究

  • 基金项目:

    国家重点基础研究发展规划项目 (1999G0 75 5 0 3 ),国家自然科学基金 (4 0 0 3 3 0 1049973 0 19)联合资助

Metamorphic zircon from Shuanghe ultra-high pressure eclogite,Dabieshan: ion microprobe and internal micro-structure study.

  • 对南大别双河超高压岩板榴辉岩中锆石进行了阴极发光、喇曼光谱、U- Pb和氧同位素离子探针微区分析。发现大部分锆石具有核边结构 ,其核和边有明显不同的 U ,Th,Pb含量、Th/ U比、2 0 6 Pb/ 2 38U年龄和δ1 8O值。锆石边部具有变质锆石的结构和化学特征 ,核部具有岩浆锆石向变质锆石变化的过渡特征。 17个点 U - Pb同位素分析中大多数为不一致年龄 ,由 14个正向不一致点所构成的不一致线与一致曲线的上、下交点年龄分别为 2 4 89± 2 5和 2 4 8± 16 Ma,它们代表了榴辉岩原岩形成时间和前进变质至峰期变质过程中原岩岩浆锆石重结晶和变质增生作用的时间 ,大别山变质锆石的成因是复杂的 ,它既可以是变质新生锆石 ,呈独立的颗粒或原岩岩浆锆石的增生边 ,也可以是由原岩锆石在固相或流体存在下的重结晶作用形成。不同程度的重结晶作用是超高压条件下双河榴辉岩原岩岩浆锆石发生的主要的物理化学变化 ,它导致锆石中 U、Th、Pb和Th/ U比的降低和岩浆振荡环带的消退
  • 加载中
  • [1]

    [1]Ames L, Zhou G Z, Xiong B C. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489

    [2]

    [2]Chavagnac V, bor-ming Jahn, I M Villa et al. 2001. Multichronometric evidence for an "in-situ" origin of the Ultra-High Pressure Metamorphic terrane of Dabieshan, China. J. of Geology, (in press)

    [3]

    [3]Chen Daogong,E Deloule,Xia Qunke et al. 2000. Preliminary U-Pb ion probe age determination of zircons from gneisses, Northern Dabie Terrain. Acta Petrologica Sinica, 16(2): 199-202(in Chinese with English abstract)

    [4]

    [4]Chen Daogong,Li Binxian,Xia Qunke et al. 2001. An evaluation of zircon U-Pb dating for metamorphic rocks and comments on zircon ages of Dabie orogen. Acta Petrologica Sinica, 17(1): 129-138(in Chinese with English abstract)

    [5]

    [5]Chen J and B Jahn. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284:101-133

    [6]

    [6]Cheng Yuqi,Liu Dunyi,I S Williams et al. 2000. SHRIMP U-Pb dating of zircons of a dark-colored eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, Eastern Dabie Area. Acta Geologica Sinica, 74(3): 193-205(in Chinese with English abstract)

    [7]

    [7]Compston W, Willims L S, Kirschvink J L et al. 1992. Zircon U-Pb ages for the Early Cambrian time scale. J Geol. Soc. London., 149: 171-184

    [8]

    [8]Cong, Zhai M, Carswell D A et al. 1995. Petrogenesis of ultrahigh pressure rocks and their country rocks at Shuanghe in Dabie, Central China. Eur. J. Mieral., 7:119-138

    [9]

    [9]Eide L, M O McWilliams and J G Liou. 1994. 40Ar/39Ar geochronologic constraints on the exhumation of HP-UHP metamorphic rocks in east-central China. Geology, 22:601-604

    [10]

    [10]Fraser G, D Ellis, S. Eggins. 1997. Zirconium abundance in granulite-facies minerals with implications for zircon geochronology in high-grade rocks. Gelogy,2 5(7):607-610

    [11]

    [11]Ganguly J, Tirone M, Hervig R L. 1998. Diffusion dynamics of Samarium and neodyminm in garnet and a method for determining cooling rates of rocks. Science, 281:805-807

    [12]

    [12]Gebauer D, Schertl H P, Brix M et al. 1997. 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumition in Dora Maria Massif, Western Alps. Lithos, 41, 5-24

    [13]

    [13]Gebauer D. 1996. A P-T-t Path for an (Ultra?)high-pressure ultramafic/mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. example: Alps Arami Central Swiss Alps, in: Reading the Isotopic Code, Geophysical Monograph, 95: 307-329

    [14]

    [14]Gebauer D, Grunenfelder M. 1979. U-Th-Pb Dating of minerals in "Lectures in Isotope Geology" edited by Jager and Hunziker, Springer-verlag, 105-131

    [15]

    [15]Hacker B R and Q C Wang. 1995. Ar/Ar geochronology of the ultra-high-pressure metamorphism in central China. Tectonics, 14:994-1006

    [16]

    [16]Hacker B R, Ratschbacher L, Webb L et al. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett., 161:215-230

    [17]

    [17]Hermann J, Rubatto D, Korsakof A et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol., 141:66-82

    [18]

    [18]Hoskin P W, L P Black. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamor. Geol., 18:423-439

    [19]

    [19]Katayama I, Maruyama S, Parkinson C et al. 2001. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stage of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters, 188: 185-198

    [20]

    [20]Lee J, Williams I and Ellis D. 1997. Pb, U and Th diffusion in nature zircon, Nature, 390(13): 159-162

    [21]

    [21]Li S, Li H, Chen Y et al. 1997. The UHP metamorphic geochronology of Dabie-Sulu terrain-II Zircon U-Pb isotope system. Science in China(D), 27(3): 200-206(in Chinese)

    [22]

    [22]Li S, Jagoutz E, Chen Y et al. 2000. Sm-Nd and Rb-Sr isotopic geochronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in Dabie mountains, Central China. Geochim. Cosmochim. Acta, 64:1077-1093

    [23]

    [23]Li S, Y Xiao, D Liu et al. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites:timing and processes. Chem. Geol., 109:89-111

    [24]

    [24]Liu R, Fan Q, Li H et al. 1995. Geochronology of UHP garnet peridotite and ecologite from Bixiling, Dabieshan. Chinese Science Bulletin, 40(14): 1304-1307(in Chinese)

    [25]

    [25]Ludwig. 2001. Isoplot for Microsoft Excel. Ver2. 49a

    [26]

    [26]Maruyama S, Liou J G, Zhang R Y. 1994. Tectonic evolution of the ultrahigh-pressure(UHP) and high-pressure(HP) metamorphic belts from central China. The Island Arc, 3:112-121

    [27]

    [27]Mezger K, Krogstad E J. 1997. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamor. Geol., 15:127-140

    [28]

    [28]Nasdala L, Pidgeon R T, Wolf D. 1995. Heterogeneous metamictazation of zircon on a microscale. Geochi. Cosmochica. Acta, 60(6):1091-1097

    [29]

    [29]Nasdala L,Irmer G,Wolf D et al. 1996. The degree of metamictization in zircon: a Raman spectroscopic study. European J. of Mineral., 1995, 7: 471-478

    [30]

    [30]Nasdala L Gotze J Pidgeon T et al. 1998. Constraining a SHRIMP U-Pb age: micro-scale characterization of zircon from Saxonian Rotligend rhyolites, Contrib. Mineral. Petrol., 132. 300-306

    [31]

    [31]Nasdala L, Pidgeon R T, Wolf D et al. 1998. Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineral. Petrol., 62:1-27

    [32]

    [32]Nasdala L, Wenzel M, Vavra G et al. 2001. Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol., 141:125-144

    [33]

    [33]Okay A L, A M C Sengor, M Satir. 1993. Tectonics of an ultrahigh-pressure metamorphic terrain: the Dabie Shan/Tongbai Shan orogen, China. Tectonics, 12:1320-1334

    [34]

    [34]Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircon from Archean granites from the Darling range bathlith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib. Mineral. Petrol., 132:288-299

    [35]

    [35]Pidgeon R T. 1992. Recrystallisation of oscillatory-zoned zircon: some geochronological and petrological implications. Contrib. Mineral. Petrol., 110:463-472

    [36]

    [36]Poller U, J Huth, P Hoppe. 2000. What causes the changes in Cathodoluminescence intensity in natural zircons? In Goldschmidt J. of Conference Abstracts 5(2):810

    [37]

    [37]Rowley D B, Xue F, Tucker R D et al. 1997. Ages of ultra-high pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet. Sci. Lett., 151:191-20

    [38]

    [38]Rubatto D, Gebauer D Fanning M. 1998. Jurassic formation and Eocene subductions for the geodynamic evolution of the Central and Western Alps. Contrib. Mineral. Petrol., 132: 269-287

    [39]

    [39]Rubatto D, Gebauer G, Compagnoni R. 1999. Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters. 167:141-158

    [40]

    [40]Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207-221

    [41]

    [41]subducted continental crust(Kokchetav massif, kazakhstan). Contrib. Mineral. Petrol., 2001, 141:66-82

    [42]

    [42]Vavra G, Gebauer D and Schmid R et al. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol., 122: 337-358

    [43]

    [43]Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: geochronology of the Ivrea Zone(Southern Alps), Contrib. Mineral. Petrol., 134:380-404

    [44]

    [44]Wetherill G W. An interpretation of Rhodesia and Witwatersrand age patterns, Geochim. Cosmochim. Acta, 1956, 9: 290-292

    [45]

    [45]Wiedenbeck M, Alle P, Corfu F et al. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, Vol. 19(1):1-23

    [46]

    [46]Xue F, Rowley D B, Tucker R D et al. 1997. U-Pb ages of granitoid rocks in the North Dabie Complex, Eastern Dabieshan, China. J. Geol., 105:744-753

    [47]

    [47]陈道公,E. Deloule,夏群科等. 2000. 北大别片麻岩中锆石U-Pb年龄离子探针初步测定. 岩石学报,16(2):199-202

    [48]

    [48]陈道公,李彬贤,夏群科等. 2001. 变质岩中锆石U-Pb计时问题评述-兼论大别造山带锆石定年. 岩石学报,17(1):129-138

    [49]

    程裕淇,刘敦-,Willams I S等. 2000. 大别山碧溪岭深色榴辉岩和片麻状花岗质岩石SHRIMP分析-晋宁期高压超高压变质作用的同位素依据. 地质学报, 74(3):193-205

    [50]

    [50]李曙光,李惠民,陈移之等. 1997. 大别-苏鲁地体超高压变质年代学. Ⅱ. 锆石U-Pb同位素体系. 中国科学(D辑), 27(3):200-206

    [51]

    [51]刘若新,樊祺诚,李惠民等. 1995. 大别山碧溪岭石榴石橄榄岩-榴辉岩高压变质作用体的年代学的研究. 科学通报, 11(3):243-255

  • 加载中
计量
  • 文章访问数:  6234
  • PDF下载数:  7863
  • 施引文献:  0
出版历程
修回日期:  2001-11-30
刊出日期:  2002-08-31

目录