赣杭构造带新路火山盆地粗面斑岩的年代学、岩石成因及其地质意义

杨水源, 文霞, 赵葵东, 姜耀辉, 凌洪飞, 陈培荣. 赣杭构造带新路火山盆地粗面斑岩的年代学、岩石成因及其地质意义[J]. 岩石学报, 2015, 31(3): 747-758.
引用本文: 杨水源, 文霞, 赵葵东, 姜耀辉, 凌洪飞, 陈培荣. 赣杭构造带新路火山盆地粗面斑岩的年代学、岩石成因及其地质意义[J]. 岩石学报, 2015, 31(3): 747-758.
YANG ShuiYuan, WEN Xia, ZHAO KuiDong, JIANG YaoHui, LING HongFei, CHEN PeiRong. Geochronology, petrogenesis and geological significance of the trachyte porphyry from Xinlu Basin, Gan-Hang Belt, SE China[J]. Acta Petrologica Sinica, 2015, 31(3): 747-758.
Citation: YANG ShuiYuan, WEN Xia, ZHAO KuiDong, JIANG YaoHui, LING HongFei, CHEN PeiRong. Geochronology, petrogenesis and geological significance of the trachyte porphyry from Xinlu Basin, Gan-Hang Belt, SE China[J]. Acta Petrologica Sinica, 2015, 31(3): 747-758.

赣杭构造带新路火山盆地粗面斑岩的年代学、岩石成因及其地质意义

  • 基金项目:

    本文受科技部973项目(2012CB416706)和国家自然科学基金项目(41403022、41422203)联合资助.

Geochronology, petrogenesis and geological significance of the trachyte porphyry from Xinlu Basin, Gan-Hang Belt, SE China

  • 在赣杭构造带上新路盆地中发现有晚期侵入到黄尖组凝灰岩中的粗面斑岩岩脉。本文运用激光等离子质谱(LA-ICP-MS)对该粗面斑岩中的锆石进行了U-Pb年龄测定,获得了131±1Ma的形成年龄。新路粗面斑岩具有高碱、高钾、高K2O/Na2O,在SiO2-K2O图解中落入橄榄安粗岩(shoshonite)系列岩石的范围之内。新路粗面斑岩还具有贫铁、钛、钙、磷以及富集轻稀土和大离子亲石元素等特征,具有较高含量的高场强元素,亏损Nb、Ta、Sr、P、Ti,以及中等铕负异常(Eu/Eu*=0.32~0.46)和铈负异常(Ce/Ce*=0.64~0.73)的特点。粗面斑岩的全岩εNd(t)值为-5.01~-4.77,锆石的εHf(t)值为-8.3~-3.8 (集中在-6~-4之间),两阶段Hf模式年龄集中在1.4~1.6Ga之间。这些地球化学特征表明新路粗面斑岩是幔源岩浆和壳源岩浆混合形成的产物,为赣杭构造带早白垩世幔源岩浆活动提供了重要证据。
  • 加载中
  • [1]

    Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255

    [2]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79

    [3]

    Aydin F, Karsli O and Chen B. 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos, 104(1-4): 249-266

    [4]

    Baker MB, Hirschmann MM, Ghiorso MS and Stolper EM. 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375(6529): 308-311

    [5]

    Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258

    [6]

    Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. New York: Elsevier, 63-114

    [7]

    Chen AQ. 1997. Two layer structure of the porphyry massif and its relation to uranium mineralization in Daqiaowu, Zhejiang Province. Journal of East China Geological Institute, 20(4): 319-327 (in Chinese with English abstract)

    [8]

    Chen JL, Xu JF, Wang BD, Kang ZQ and Jie L. 2010. Origin of Cenozoic alkaline potassic volcanic rocks at Konglongxiang, Lhasa terrane, Tibetan Plateau: Products of partial melting of a mafic lower-crustal source? Chemical Geology, 273(3-4): 286-299

    [9]

    Chen ZL, Wang Y, Zhou YG, Han FB, Wang PA, Gong HL, Shao F, Tang XS and Xu JS. 2013. SHRIMP U-Pb dating of zircons from volcanic-intrusive complexes in the Xiangshan uranium orefield, Jiangxi Province, and its geological implications. Geology in China, 40(1): 217-231 (in Chinese with English abstract)

    [10]

    Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G and Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574

    [11]

    Gao JF, Lu JJ, Lai MY, Lin YP and Pu W. 2003. Analysis of trace elements in rock samples using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract)

    [12]

    Gilder SA, Gill J, Coe RS, Zhao XX, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD and Wu HR. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysical Research: Solid Earth (1978~2012), 101(B7): 16137-16154

    [13]

    Goldstein SL, O'Nions RK and Hamilton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2): 221-236

    [14]

    Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147

    [15]

    Guo XS, Chen JF, Zhang X, Tang JF, Xie Z, Zhou TX and Liu YL. 2001. Nd isotopic ratios of K-enriched magmatic complexes from southeastern Guangxi Province: Implications for upwelling of the mantle in southeastern China during the Mesozoic. Acta Petrologica Sinica, 17(1): 19-27 (in Chinese with English abstract)

    [16]

    Han XZ, Liu RR, Liu Q, Wang MT, Yao SC and Hui XC. 2010. Uranium metallogenic model for west segment of Xinlu volcanic basin in Quzhou area, Zhejiang Province. Mineral Deposits, 29(2): 332-342 (in Chinese with English abstract)

    [17]

    He GS, Dai MZ, Li JF, Cao SS, Xia B, Xu DR, Li WQ and Yang ZQ. 2009. SHRIMP zicon U-Pb dating and its geological implication for the Xiangshan porphyric dacite-rhyolitic. Geotectonica et Metallogenia, 33(2): 299-303 (in Chinese with English abstract)

    [18]

    He ZY, Xu XS, Chen R and Xing GF. 2007. Genesis of Middle Jurassic syenite-gabbro in southern Jiangxi province and their geological significance. Acta Petrologica Sinica, 23(6): 1457-1469 (in Chinese with English abstract)

    [19]

    Holbig ES and Grove TL. 2008. Mantle melting beneath the Tibetan Plateau: Experimental constraints on ultrapotassic magmatism. Journal of Geophysical Research: Solid Earth (1978~2012), 113(B4), doi: 10.1029/2007JB005149

    [20]

    Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)

    [21]

    Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69

    [22]

    Jacobsen SB and Wasserburg GJ. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1): 139-155

    [23]

    Jahn BM, Litvinovsky BA, Zanvilevich AN and Reichow M. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos, 113(3-4): 521-539

    [24]

    Jiang YH, Ling HF, Jiang SY, Fan HH, Shen WZ and Ni P. 2005. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154

    [25]

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin BA. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

    [26]

    Liew TC and Hofmann AW. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from an Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98(2): 129-138

    [27]

    Liu FY, Wu JH and Liu S. 2009. Early Cretaceous zircon SHRIMP U-Pb age of the trachyte and its significances of the Gan-Hang Belt. Journal of East China Institute of Technology (Natural Science), 32(4): 330-335 (in Chinese with English abstract)

    [28]

    Ludwig KR. 2003. ISOPLOT 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication, 70

    [29]

    Lugmair GW and Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357

    [30]

    Mcdonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [31]

    Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424

    [32]

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81

    [33]

    Pe-Piper G and Piper DJW. 2001. Late Cenozoic, post-collisional Aegean igneous rocks: Nd, Pb and Sr isotopic constraints on petrogenetic and tectonic models. Geological Magazine, 138(6): 653-668

    [34]

    Pu W, Zhao KD, Ling HF and Jiang SY. 2004. High precision Nd isotope measurement by Triton TI Mass Spectrometry. Acta Geoscientica Sinica, 25(2): 271-274 (in Chinese with English abstract)

    [35]

    Pu W, Gao JF, Zhao KD, Ling HF and Jiang SY. 2005. Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4): 445-450 (in Chinese with English abstract)

    [36]

    Seo J, Choi SG and Oh CW. 2010. Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, 18(2-3): 479-496

    [37]

    Shimizu H, Sawatari H, Kawata Y, Dunkley PN and Masuda A. 1992. Ce and Nd isotope geochemistry on island arc volcanic rocks with negative Ce anomaly: Existence of sources with concave REE patterns in the mantle beneath the Solomon and Bonin island arcs. Contributions to Mineralogy and Petrology, 110(2-3): 242-252

    [38]

    Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324

    [39]

    Sun LH, Wang YJ, Fan WM and Zi JW. 2008. Post-collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications. Gondwana Research, 14(3): 383-394

    [40]

    Tang JW. 2009. Review on geological character and exploration methods of Daqiaowu volcanic-type uranium deposit. World Nuclear Geoscience, 26(4): 212-218 (in Chinese with English abstract)

    [41]

    Tchameni R, Mezger K, Nsifa NE and Pouclet A. 2001. Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57(1): 23-42

    [42]

    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71

    [43]

    Van Achterbergh E, Ryan CG, Jackson SE and Griffin WL. 2001. Data reduction software for LA-ICP-MS. In: Sylvester P (ed.). Laser-ablation-ICP-MS in the Earth Sciences: Principles and Applications. Ottawa: Mineralogical Association of Canada, 239-243

    [44]

    White JC, Parker DF and Ren MH. 2009. The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling. Journal of Volcanology and Geothermal Research, 179(1-2): 33-55

    [45]

    Williams HM, Turner SP, Pearce JA, Kelley SP and Harris NBW. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology, 45(3): 555-607

    [46]

    Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126

    [47]

    Wu JH, Liu FY and Liu S. 2011. SHRIMP U-Pb zircon age of Late Mesozoic trachyte in Xiajiang-Guangfeng and Sannan (Quannan, Dingnan and Longnan) -Xunwu volcanic belts. Geological Review, 57(1): 125-132 (in Chinese with English abstract)

    [48]

    Wu JQ, Tan GL, Zhang BT, Ling HF and Chen PR. 2011. Identification and genesis of the Early Cretaceous shoshonitic volcanic rock series in Central Jiangxi Province. Geological Journal of China Universities, 17(4): 479-491 (in Chinese with English abstract)

    [49]

    Xu YG, Menzies MA, Thirlwall MF and Xie GH. 2001. Exotic lithosphere mantle beneath the western Yangtze craton: Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology, 29(9): 863-866

    [50]

    Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH and Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99-125

    [51]

    Yang SY, Jiang SY, Jiang YH, Zhao KD and Fan HH. 2010. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China. Science China (Earth Sciences), 53(10): 1411-1426

    [52]

    Yang SY, Jiang SY, Jiang YH, Zhao KD and Fan HH. 2011. Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1-2): 21-48

    [53]

    Yang SY, Jiang SY, Zhao KD, Jiang YH, Ling HF and Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China. Lithos, 150(1): 155-170

    [54]

    Yang SY, Jiang SY, Zhao KD, Jiang YH and Fan HH. 2012. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of the rhyolite porphyry from the Zhoujiaoshan deposit in Xiangshan uranium ore field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915-3928 (in Chinese with English abstract)

    [55]

    Yang SY. 2013. Petrogenesis and geodynamic setting of magmatic rocks from uranium-bearing volcanic basins, Gan-Hang Belt, Southeast China. Ph. D. Dissertation. Nanjing: Nanjing University, 1-148 (in Chinese with English summary)

    [56]

    Yang SY and Jiang SY. 2013. Occurrence and significance of a quartz-amphibole schist xenolith within a mafic microgranular enclave in the Xiangshan volcanic-intrusive complex, SE China. International Geology Review, 55(7): 894-903

    [57]

    Yang SY, Jiang SY, Zhao KD and Jiang YH. 2013. Petrogenesis and tectonic significance of Early Cretaceous high-Zr rhyolite in the Dazhou uranium district, Gan-Hang Belt, Southeast China. Journal of Asian Earth Sciences, 74(1): 303-315

    [58]

    Yang SY, Jiang SY, Zhao KD, Jiang YH, Ling HF and Chen PR. 2013. Timing and geological implications of volcanic rocks from the Ruyiting section, Xiangshan uranium ore field, Jiangxi Province, SE China. Acta Petrologica Sinica, 29(12): 4362-4372 (in Chinese with English abstract)

    [59]

    Zhang BT, Chen PR, Ling HF and Kong XG. 2004. Pb-Nd-Sr isotopic study of the Middle Jurassic basalts in southern Jiangxi Province: Characteristics of mantle source and tectonic implication. Geological Journal of China Universities, 10(2): 145-156 (in Chinese with English abstract)

    [60]

    Zhang M, Wu JH and Zhu XY. 2009. Geochemical characteristics of trachyte in Shixi and Sanbaishan Basin, and its geological significance. Journal of East China Institute of Technology (Natural Science Edition), 32(1): 52-60 (in Chinese with English abstract)

    [61]

    Zhou J, Jiang YH, Xing GF, Zeng Y and Ge WY. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383

    [62]

    Zhou XH, Yan ZB and Hu YJ. 2004. Study on facies of Mesozoic volcanic rock and types of uranium deposits in Zhegan. Journal of East China Institute of Technology, 27(4): 327-332 (in Chinese with English abstract)

    [63]

    陈爱群. 1997. 浙江大桥坞斑岩体"双层结构"与铀矿化. 东华理工学院学报(自然科学版), 20(4): 319-327

    [64]

    陈正乐, 王永, 周永贵, 韩凤彬, 王平安, 宫红良, 邵飞, 唐湘生, 徐金山. 2013. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义. 中国地质, 40(1): 217-231

    [65]

    高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850

    [66]

    郭新生, 陈江峰, 张巽, 汤加富, 谢智, 周泰禧, 刘玉龙. 2001. 桂东南富钾岩浆杂岩的Nd同位素组成: 华南中生代地幔物质上涌事件. 岩石学报, 17(1): 19-27

    [67]

    韩效忠, 刘蓉蓉, 刘权, 王明太, 腰善丛, 惠小朝. 2010. 浙江省衢州地区新路火山岩盆地西段铀成矿模式. 矿床地质, 29(2): 332-342

    [68]

    何观生, 戴民主, 李建峰, 曹寿孙, 夏斌, 许德如, 李文铅, 杨之青. 2009. 相山流纹英安斑岩锆石SHRIMP U-Pb年龄及地质意义. 大地构造与成矿学, 33(2): 299-303

    [69]

    贺振宇, 徐夕生, 陈荣, 邢光福. 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457-1469

    [70]

    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604

    [71]

    刘飞宇, 巫建华, 刘帅. 2009. 赣杭带早白垩世粗面岩锆石SHRIMP U-Pb年龄及其意义. 东华理工大学学报(自然科学版), 32(4): 330-335

    [72]

    濮巍, 赵葵东, 凌洪飞, 蒋少涌. 2004. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定. 地球学报, 25(2): 271-274

    [73]

    濮巍, 高剑峰, 赵葵东, 凌洪飞, 蒋少涌. 2005. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法. 南京大学学报(自然科学版), 41(4): 445-450

    [74]

    汤江伟. 2009. 大桥坞火山岩型铀矿床地质特征及勘查方法评述. 世界核地质科学, 26(4): 212-218

    [75]

    巫建华, 刘飞宇, 刘帅. 2011. 峡江-广丰和三南-寻乌火山岩带晚中生代粗面岩SHRIMP锆石U-Pb年龄. 地质论评, 57(1): 125-132

    [76]

    吴俊奇, 谭桂丽, 章邦桐, 凌洪飞, 陈培荣. 2011. 赣中早白垩世橄榄玄粗岩(Shoshonite)系列火山岩的厘定及成因研究. 高校地质学报, 17(4): 479-491

    [77]

    杨水源, 蒋少涌, 赵葵东, 姜耀辉, 范洪海. 2012. 江西相山铀矿田邹家山矿床中流纹斑岩的锆石U-Pb年代学、岩石地球化学与Sr-Nd-Hf同位素组成. 岩石学报, 28(12): 3915-3928

    [78]

    杨水源. 2013. 华南赣杭构造带含铀火山盆地岩浆岩的成因机制及动力学背景. 博士学位论文. 南京: 南京大学, 1-148

    [79]

    杨水源, 蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 陈培荣. 2013. 江西相山铀矿田如意亭剖面火山岩的年代学格架及其地质意义. 岩石学报, 29(12): 4362-4372

    [80]

    章邦桐, 陈培荣, 凌洪飞, 孔兴功. 2004. 赣南中侏罗世玄武岩的Pb-Nd-Sr同位素地球化学研究: 中生代地幔源区特征及构造意义. 高校地质学报, 10(2): 145-156

    [81]

    张敏, 巫建华, 祝禧艳. 2009. 石溪盆地和三百山盆地粗面岩地球化学特征及其地质意义. 东华理工大学学报(自然科学版), 32(1): 52-60

    [82]

    周肖华, 严兆彬, 胡玉江. 2004. 浙赣中生代火山岩岩相与铀矿床类型研究. 东华理工学院学报, 27(4): 327-332

  • 加载中
计量
  • 文章访问数:  5535
  • PDF下载数:  4428
  • 施引文献:  0
出版历程
收稿日期:  2014-08-01
修回日期:  2014-11-19
刊出日期:  2015-03-31

目录