滇西北雪鸡坪铜矿床流体包裹体特征研究及矿床成因讨论

王承洋, 李文昌, 王可勇, 周向斌, 尹光侯, 余海军, 薛顺荣. 滇西北雪鸡坪铜矿床流体包裹体特征研究及矿床成因讨论[J]. 岩石学报, 2015, 31(4): 967-978.
引用本文: 王承洋, 李文昌, 王可勇, 周向斌, 尹光侯, 余海军, 薛顺荣. 滇西北雪鸡坪铜矿床流体包裹体特征研究及矿床成因讨论[J]. 岩石学报, 2015, 31(4): 967-978.
WANG ChengYang, LI WenChang, WANG KeYong, ZHOU XiangBin, YIN GuangHou, YU HaiJun, XUE ShunRong. Characteristics of fluid inclusions and genesis of Xuejiping copper deposit in northwestern Yunnan Province[J]. Acta Petrologica Sinica, 2015, 31(4): 967-978.
Citation: WANG ChengYang, LI WenChang, WANG KeYong, ZHOU XiangBin, YIN GuangHou, YU HaiJun, XUE ShunRong. Characteristics of fluid inclusions and genesis of Xuejiping copper deposit in northwestern Yunnan Province[J]. Acta Petrologica Sinica, 2015, 31(4): 967-978.

滇西北雪鸡坪铜矿床流体包裹体特征研究及矿床成因讨论

  • 基金项目:

    本文受云南省"科技创新人才计划-科技领军人才培养"项目(2013HA001)资助.

详细信息

Characteristics of fluid inclusions and genesis of Xuejiping copper deposit in northwestern Yunnan Province

More Information
  • 雪鸡坪铜矿床产于印支晚期石英二长闪长玢岩-石英闪长玢岩-石英二长斑岩复式侵入体内,为一斑岩型铜矿床.矿床形成经历了多阶段热液成矿作用,主要有微细脉浸染状黄铁矿±黄铜矿-石英、细脉状辉钼矿±黄铁矿±黄铜矿-石英及微细脉状贫硫化物-石英-方解石等.流体包裹体岩相学、显微测温、激光拉曼及碳、氢、氧同位素综合研究表明,微细脉浸染状黄铁矿±黄铜矿-石英阶段石英中主要发育含NaCl子矿物三相及气液两相包裹体,与含矿的石英二长斑岩石英中发育的流体包裹体特征相似,表明成矿流体主要为中高温、高盐度NaCl-H2O体系热液,可能主要来源于印支期石英二长斑岩侵入体;辉钼矿±黄铁矿±黄铜矿-石英中主要发育含CO2三相及气液两相包裹体,成矿流体为中温、低盐度NaCl-CO2-H2O体系热液,与前者来源明显不同;贫硫化物-石英-方解石石英中主要发育气液两相包裹体,成矿流体为中低温、低盐度NaCl-H2O体系热液,推测其可能较多来自于大气降水.因此,雪鸡坪铜矿床为不同来源、不同地球化学性质热液叠加成矿作用的结果.
  • 加载中
  • [1]

    Bodnar RJ. 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Tompson J (ed.). Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course, Vol. 23. Victoria, B.C: Mineralogical Association of Canada, 139-152

    [2]

    Brown PE and Hagemann SG. 1995. MacFlincor and its application to fluids in Archean lode-gold deposits. Geochimica et Cosmochimica Acta, 59(19): 3943-3952

    [3]

    Clayton RN, O'Neil JR and Mayeda TK. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(B17): 3057-3067

    [4]

    Cline JS and Bodnar RJ. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res., 96(B5): 8113-8126

    [5]

    Cline JS and Vanko DA. 1995. Magmatically generated saline brines related to molybdenum at Questa, New Mexico, USA. In: Thompson JFH (ed.). Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada short Course Series. Victoria: Mineralogical Association of Canada, 153-174

    [6]

    Frezzotti ML. 1992. Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochimica et Cosmochimica Acta, 56(1): 21-33

    [7]

    Hou ZQ, Yang YQ, Wang HP, Qu XM and Huang DH. 2003. Collision-Orogenic Processes and Mineralization Systems of the Yidun Arc. Beijing: Geologica1 Publishing House, 35-45 (in Chinese)

    [8]

    Hou ZQ, Yang YQ, Qu XM, Huang DH, Lü QT, Wang HP, Yu JJ, Lu YX and Liu XL. 2004. Tectonic evolution and mineralization systems of the Yidun Arc Orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109-118 (in Chinese with English abstract)

    [9]

    Kamenetsky VS, Wolfe RC, Eggins SM, Mernagh TP and Bastrakov E. 1999. Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: A melt-inclusion record of the initial ore-forming process. Geology, 27(8): 691-694

    [10]

    Kamenetsky VS, Davidson P, Mernagh TP, Crawford AJ, Gemmell JB, Portnyagin MV and Shinjo R. 2002a. Fluid bubbles in melt inclusions and pillow-rim glasses: High-temperature precursors to hydrothermal fluids? Chem. Geol., 183(1-4): 349-364

    [11]

    Kamenetsky VS, van Achterbergh E, Ryan CG, Naumov VB, Mernagh TP and Davidson P. 2002b. Extreme chemical heterogeneity of granite-derived hydrothermal fluids: An example from inclusions in a single crystal of miarolitic quartz. Geology, 30(5): 459-462

    [12]

    Leng CB, Zhan XC, Wang SX, Qin CJ and Gou TZ. 2007. Geochemical characteristics of porphyry copper deposits in the Zhongdian area, Yunnan as exemplified by the Xuejiping and Pulang porphyry copper deposits. Acta Mineralogica Sinica, 27(3-4): 414-422 (in Chinese with English abstract)

    [13]

    Leng CB, Zhang XC, Wang SX, Wang WQ, Qin CJ, Wu KW and Ren T. 2008. Sulfur and lead isotope compositions of the Xuejiping porphyry copper deposit in Northwest Yunnan, China: Tracing for the source of metals. J. Mineral. Petrol., 28(4): 80-88

    [14]

    Li WC, Pan GT, Hou ZQ, Mo XX, Wang LQ, Ding J and Xu Q. 2010. Archipelagic-Basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House, 42-46 (in Chinese)

    [15]

    Li WC, Yi HG, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552 (in Chinese with English abstract)

    [16]

    Li YQ. 1985. Evolution mechanism of inclusions and metallogenic pH condition of some major porphyry copper (molybdenum) deposits in China. Mineral Deposits, 4(3): 51-60 (in Chinese with English abstract)

    [17]

    Lin QC, Xia B and Zhang YQ. 2006. Zircon SHRIMP U-Pb dating of the syn-collisional Xuejiping quartz diorite porphyrite in Zhongdian, Yunnan, China, and its geological implications. Geological Bulletin of China, 25(1-2): 133-135 (in Chinese with English abstract)

    [18]

    Lowenstern JB. 1994. Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy. Am. Mineral., 79(3-4): 353-369

    [19]

    Phillips GN and Zhou T. 1999. Gold-only deposits and Archean granite. Society of Economic Geologists Newsletter, 37: 6

    [20]

    Roedder E. 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta, 56(1): 5-20

    [21]

    Su JQ. 2008. Metallogenic characteristics and prospecting direction of Xuejiping copper deposit in Shangri-La. Nonferrous Metals, 60(1): 17-20

    [22]

    Wang XS, Bi XW, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS zircon U-Pb dating of granite porphyry in the Hongshan Cu-polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 31(3): 315-321 (in Chinese with English abstract)

    [23]

    Webster JD. 2004. The exsolution of magmatic hydrosaline chloride liquids. Chemical Geology, 210(1-4): 33-48

    [24]

    Xu XW, Cai XP, Qu WJ, Song BC, Qin KZ and Zhang BL. 2006. Later Cretaceous granitic porphyritic Cu-Mo mineralization system in the Hongshan area, northwestern Yunnan and its significances for tectonics. Acta Geologica Sinica, 80(9): 1423-1433 (in Chinese with English abstract)

    [25]

    Yang K and Bodnar RJ. 2004. Orthomagmatic origin for the Ilkwang Cu-W breccia-pipe deposit, southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Sciences, 24(2): 259-270

    [26]

    Yang XH. 2010. Metallogenic regularity, exploration and evaluation of porphyry copper deposits in Zhongdian area, Yunnan. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-120 (in Chinese)

    [27]

    Zeng PS, Wang HP, Yu XH, Li WC, Li TG, Li H and Yang CZ. 2004. Tectonic setting and prospects of porphyry copper deposits in Zhongdian island arc belt. Acta Geoscientica Sinica, 25(5): 535-540 (in Chinese with English abstract)

    [28]

    Zhang DH, Xu GJ, Zhang WH and Golding SD. 2007. High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province, China: Their origin and implications for ore genesis. Ore Geology Reviews, 31(1-4): 247-260

    [29]

    Zhang LG. 1985. The Application of the Stable Isotope to Geology. Xi'an: Shaanxi Science and Technology Press (in Chinese)

    [30]

    Zhang RB, Liu JM and Ye J. 2003. C&O isotopic geochemistry of Shouwangfen copper deposit, Hebei Province. Mineral Resources and Geology, 17(2): 122-126 (in Chinese with English abstract)

    [31]

    Zhong XS. 1982. A primary study of geological characters and ore-forming factors of Xuejiping porphyry copper deposits. Yunnan Geology, 1(2): 134-136 (in Chinese)

    [32]

    侯增谦, 杨岳清, 王海平, 曲晓明, 黄典豪. 2003. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社, 35-45

    [33]

    侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-118

    [34]

    冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠. 2007. 云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征——以雪鸡坪和普朗斑岩铜矿床为例. 矿物学报, 27(3-4): 414-422

    [35]

    李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全, 丁俊, 徐强. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社, 42-46

    [36]

    李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552

    [37]

    李荫清. 1985. 我国几个主要斑岩铜(钼)矿床的包裹体演化机制及成矿pH条件. 矿床地质, 4(3): 51-60

    [38]

    林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石 SHRIMP U-Pb定年及其意义. 地质通报, 25(1-2): 133-137

    [39]

    王新松, 毕献武, 冷成彪, 唐永永, 兰江波, 齐有强, 沈能平. 2011. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义. 矿物学报, 31(3): 315-321

    [40]

    徐兴旺, 蔡新平, 屈文俊, 宋保昌, 秦克章, 张宝林. 2006. 滇西北红山晚白垩世花岗斑岩型Cu-MO成矿系统及其大地构造学意义. 地质学报, 50(9): 1422-1433

    [41]

    杨夕辉. 2010. 云南中甸地区斑岩铜矿成矿规律与勘查评价. 博士学位论文. 北京: 中国地质大学

    [42]

    曾普胜, 王海平, 莫宣学, 喻学惠, 李文昌, 李体刚, 李红, 杨朝志. 2004. 中甸岛弧带构造格架及斑岩铜矿前景. 地球学报, 25(5): 535-540

    [43]

    张理刚. 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社

    [44]

    张瑞斌, 刘建明, 叶杰. 2003. 河北寿王坟铜矿碳-氧同位素地球化学特征及其意义. 矿产与地质, 17(2): 122-126

    [45]

    钟惜时. 1982. 雪鸡坪斑岩铜矿地质特征及对成矿因素的初步认识. 云南地质, 1(2): 134-146

  • 加载中
计量
  • 文章访问数:  4597
  • PDF下载数:  3749
  • 施引文献:  0
出版历程
收稿日期:  2013-03-01
修回日期:  2013-12-31
刊出日期:  2015-04-30

目录