北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约

钱青 孙晓猛. 北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约[J]. 岩石学报, 2001, 17(3): 385-394.
引用本文: 钱青 孙晓猛. 北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约[J]. 岩石学报, 2001, 17(3): 385-394.
QIAN Qing 1,ZHANG Qi 1 and SUN XiaoMeng 21. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China 2. Geological Department,Jilin University,Changchun 130022,China. Tectonic setting and mantle source characteristics of Jiugequan basalts, NorthQilian: Contraints from trace elements and Nd-isotopes[J]. Acta Petrologica Sinica, 2001, 17(3): 385-394.
Citation: QIAN Qing 1,ZHANG Qi 1 and SUN XiaoMeng 21. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China 2. Geological Department,Jilin University,Changchun 130022,China. Tectonic setting and mantle source characteristics of Jiugequan basalts, NorthQilian: Contraints from trace elements and Nd-isotopes[J]. Acta Petrologica Sinica, 2001, 17(3): 385-394.

北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约

  • 基金项目:

    本文受国家自然科学基金(40002006)资助.

Tectonic setting and mantle source characteristics of Jiugequan basalts, NorthQilian: Contraints from trace elements and Nd-isotopes

  • 北祁连九个泉蛇绿岩中的玄武岩的MORB,根据其地质产状和地球化学特征又可以分为两部分,剖面下部的玄武岩为N-MORB,上部的玄武岩主要为E-MORB。玄武岩多数具有Nb负异常,从下向上,九个朱武岩的Th,Nb,LREE,Zr等含量及(La/Yb)N,(La/Sm)N,Ce/Zr,Zr/Y,Th/.La,Th/Yb比值逐渐增加,并伴随着Y,Yb,Lu,Sc含量,Zr/Nb和La/Nb比值以及εEd(t)的逐渐减小,不相容元素比值及εNd(t)之间具有很好的相关性,上述特征反映不均一地幔部分熔融过程中N-MORB源区和富集地幔之间的混合作用,微量元素和Nd同位素地球化学特征表明九个泉蛇绿岩形成于弧后盆地中的海山环境,玄武岩的化学成分在垂向上的变化记录了海山生长并逐渐远离扩张脊的动态的地质过程,海山可能是形成蛇绿岩的一种重要环境。
  • 加载中
  • [1]

    [1]Argnani A, Savelli C, Borgia A.1993. Structure and dynamics of Marsili Volcanic Seamount (Tyrrhenian backarc basin). Eos,Transactions, American Geophysical Union, 74 (Suppl.): 646

    [2]

    [2]Batiza R, Vanko D. 1984. Petrology of young Pacific Seamounts. J. Geophys. Res. ,89(B13): 11235-11260

    [3]

    [3]Deng Wanming. 1982. Studies on the igneous petrology of the Yarlung-Zangboophiolite, Xizang. In: Proceedings of Geological Research on Qinghai-Xizang, BeijingGeological Publishing House, 36-52

    [4]

    [4]Edelman SH. 1988. Ophiolite generation and emplacement by rapid subduction hingeretreat on a continental-bearing plate. Geology, 16:311-313

    [5]

    [5]Elthon D. 1991. Geochemical evidence for formation of the Bay of Islands Ophioliteabove a subduction zone. Nature, 354: 140-143

    [6]

    [6]Feng Yimin, He Shipin. 1995. Research for geology and geochemistry of severalophiolites in the North Qilian Mountains, China. Acta Petrologica Sinica, 11 (Suppl.):125-146 (in Chinese with English abstract)

    [7]

    [7]Feng Yimin, He Shiping. 1996. Geotectionics and Orogeny of the Qilian Mountains,China. Geological Publishing House, Beijing (in Chinese with English abstract)

    [8]

    [8]Frey FA, Garcia MO, Wise WS, Kennedy A, Gurriet P and Albarede F. 1991. Theevolution of Mauna Kea volcano, Hawaii: petrogenesis of tholeiitic and alkalic basalts. J.Geophys. Res. , 96 (B9): 14347-14375

    [9]

    [9]Fryer P, Gill JB, Jackson MC. 1997. Volcanologic and tectonic evolution of theKasuga Seamounts, northern Mariana Trough, Alvin submersible investigations. J. Vol.Geotherm. Res., 79: 277-311

    [10]

    [10]Ikeda Y, Yuasa M. 1989. Volcanism in nascent back-arc basinsbehind the ShichitoRidge and adjacent areas in the Izu-Ogasowara Arc, Northwest Pacific: evidence for mixingbetween E-type MORB and island arc magmas at the initiation of back-arc rifting. Contrib.Mineral. Petrol. , 101: 377- 393

    [11]

    [11]Ishiwatari A. 1985. Igneous petrogenesis of the Yakuno ophiolite (Japan) in thecontext of the diversity of ophiolites. Earth Planey. Sci. Lett., 76:93-108

    [12]

    [12]Kamenetsky VS, Crawford AJ, Eggins S, Muehe R. 1997. Phenocryst and melt inclusionchemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedgemelting and the addition of subduction components. Earth Planet. Sci. Lett. , 151:205-223

    [13]

    [13]Leemah WP, Gerlach DC, Garcia MO and West HB. 1994. Geochemical variations inlavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derivedmagmas. Contrib. Mineral. Petrol., 116: 62-77

    [14]

    [14]Lundstrom CC, Sampson DE, Perfit MR, Gill J and Williams Q. 1999. Insights intomid-ocean ridge basalt petrogenesis U-series disequilibria from the Siqueiros Transform,Lamont Seamounts, and East Pacific Rise. J. Geophys. Res. , 104 (B6): 13035-13048

    [15]

    [15]Melson WG, Vallier TL, Wright TL, Byerly G, and Nelen J. 1976. Chemical diversityof abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean sea-floorspreading centers, in: The Geophysics of the Pacific Ocean and its Margin: A Volume inHonor of George P. Woollard, Geophys. Monogr. Ser. Vol. 19, edited by G. H. Sutton, M. H.Manghnani, and R. Moberly, 351-368, AGU, Washington, D. C

    [16]

    [16]Meyer J, Mercolli I, Immenhauser A. 1996. Off-ridge alkaline magmatism andseamount volcanoes in the Masirah island ophiolite, Oman. Tectonophysics, 267:187-208

    [17]

    [17]Niu Y, Waggoner DG, Sinton JM, Mahoney JJ. 1996. Mantle source heterogeneity andmelting processes beneath seafloor spreading centers: The East Pacific Rise, 18°- 19°S.J. Geophys. Res. , 101(B12): 27711-27733

    [18]

    [18]Niu, Y. , Collerson KD, Batiza R, Wendt I & Regleous M. 1999. The origin ofE-type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20\' N, J.Geophys. Res. , 104:7067-7087

    [19]

    [19]Pearce J A, Alabaster T, Shelton AW, et al. 1981. The Oman ophiolite as aCretaceous arc-basin complex: evidence and implications. Phil. Trans. R. Lond. , A300:299-317

    [20]

    [20]Pearce JA, Cann JR. 1973. Tectonic setting of basic volcanic rocks determinedusing trace element analyses. Earth Planet. Sci. Lett., 19:290-300

    [21]

    [21]Pearce JA, Norry MJ. 1979. Petrogenetic Implications of Ti, Zr, Y, and NbVariations in Volcanic Rocks. Contrib. Mineral. Petrol. , 69:33-47

    [22]

    [22]Perfit MR, Fornari DJ, Smith MC, Bender J F, Langmuir C H, Haymon R M. 1994. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes.Geology, 22:375-379

    [23]

    [23]Prieto MJ, Gracia E, Canals M, Ercilla G, De Batist M. 1997. Sedimentary historyof the central Bransfield Basin (NW Antarctic Peninsula). In: The Antarctic Region,Geological Evolution and Processes. Terra Antarctica Publication, Siena, Italy, 711-717

    [24]

    [24]Qian Qing, 1999. Lithogeochemical characteristics and geodynamic significance ofJiugequan ophiolite and Jiugequan-Laohushan ophiolite\' s cover, North Qilian. Institute ofGeology and Geophysics, CAS. Doctoral dissertation (in Chinese with English abstract)

    [25]

    [25]Qiao Guangsheng. Normalization of isotopic dilution analysis. Scientia Sinica,1988, 31: 1263- 1268

    [26]

    [26]Reynolds JR, Langmuir CH, Bender JF, Kastens KA, Willian BFR. 1992. Spatial andtemporal variability in the geochemistry of basalts from the East Pacific Rise. Nature,359:493-499

    [27]

    [27]Robinson PT, Malpas J. 1990. The Troodos ophiolite of Cyprus:New perspectives onits origin and emplacement, in: Malpas J. et al. , eds. Ophiolites, Oceanic CrustalAnalogues. Nicocia, Cyprus: Geol. Sur. Dept. , 13-26

    [28]

    [28]Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation,Interpretation. Longman Singapore Publishers Ltd.

    [29]

    [29]Schilling JG, Ruppel C, Davis AN, McCully B, Tighe SA, Kindsley RH, Lin J. 1995. Thermal structure of the mantle beneath Equatorial Mid-Atlantic Ridge: inferences fromspatial variations of dredged basalt glass compositions. J. Geophys. Res. , 100:10057-10076

    [30]

    [30]Schilling JG, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R. 1983. Petrological and geochemical variation along the Mid-Atlantic Ridge from 29° N to 73° N.Am. J. Sci. , 283:510-586

    [31]

    [31]Schilling JG. 1991. Fluxes and excess temperatures of mantle plumes inferred fromtheir interaction with migration mid-ocean ridges. Nature, 352:397-403

    [32]

    [32]Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas.Earth Planet. Sci. Lett., 59:101-118

    [33]

    [33]Sigurdsson H. 1981. First -order major element variation in basalt glasses fromthe mid-Atlantic Ridge, 29° N to 73° N. Journal of Geophys. Res. , 86:9483-9502

    [34]

    [34]Song Shuguan. 1997. Tectonic evolution of subductive complex belts in the northQilian Mountains. Advance in Earth Sciences, 12:351-365(in Chinese with English abstract)

    [35]

    [35]Stern RJ, Pearce J. 1998. Back-arc basin TTG suites, the Mariana Trough example.Geol. Soc. Am. , 30:259

    [36]

    [36]Sun S -S, and Hanson GN. 1975. Origin of Ross Island basanitoids and limitationsupon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib.Mineral. Petrol. , 52:77- 106

    [37]

    [37]Sun S -S, McDonough WF. 1989. Chemical and isotopic systematics of oceanicbasalts: implications for mantle composition andprocesses. From Saunders A D. & NorryM J. (eds.),Magmatism in the Ocean Basins, Geological Society Special Publication,42:313-345

    [38]

    [38]White WM, Schilling JG. 1978. The nature and origin of geochemical variation inMid-Atlantic Ridge basalts from the central North Atlantic: Geochi. Cosmochi. Acta, 42:1501-1516

    [39]

    [39]Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman.

    [40]

    [40]Xia Linqi, Xia Zuchun, Xu Xueyi et al. 1996. Petrogenesis of marine volcanic rocksfrom North Qilian Mountains. Geological Publishing House, Beijing(in Chinese with Englishabstract)

    [41]

    [41]Yamashita S. 1991. Origin of felsic magmas at Meiyo-Daini Seamount in Yamatobackarc basin, Japan Sea. Bulletin of the Volcanological Society of Japan, 36:431-441

    [42]

    [42]Zhang Qi, Qian Qing. 1998. Ophiolite, overlying rock series of ophiolite and theircomparison to the oceanic crust. Earth Science Frontiers, 5: 193- 199 (in Chinese withEnglish abstract )

    [43]

    [43]Zhang Qi, Sun Xiaomeng, Zhou Dejin, Qian Qing, Chen Yu, Wang Yueming, Jia Xiuqin,Han Song. 1997. The characteristics of North Qilian ophiolites, forming settings and theirtectonic significance. Advance in Earth Sciences, 12: 366- 393 (in Chinese with Englishabstract)

    [44]

    [44]Zhang Qi, Zhou Dejin, Chen Yu, Qian Qing. 1998. Two types of ophiolite sectionsand their genesis. Proress in Natural Science,8: 202-207(in Chinese with English abstract)

    [45]

    [45]Zhang Qi, Zhou Guocling. 2001. Ophiolites of China. Science Publishing House,Beijing(in Chinese with English abstract)

    [46]

    [46]Zhang Qi. 1995. Some problems concerning the ophiolite study. Acta PetrologicaSinica, 11 (Suppl.): 228 - 240 (in Chinese with English abstract)

    [47]

    [47]Zindler A, Hart S. 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Science,14:493-571

    [48]

    [48]Zindler A, Staudigel H, Batiza R. 1984. Isotope and trace element geochemistry ofyoung Pacific seamounts: implications for the scale of upper mantle heterogeneity. EarthPlanet. Sci. Lett.,70:175-195

    [49]

    [49]邓万明.1982.雅鲁藏布蛇绿岩带火成岩研究.青藏高原地质论文专辑,北京:地质出版社,36-52

    [50]

    [50]冯益民,何世平.1995.北祁连蛇绿岩的地质地球化学研究.岩石学报,11(增刊):125-146

    [51]

    [51]冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社,

    [52]

    [52]钱青.1999.北祁连九个泉蛇绿岩及九个泉和老虎山"蛇绿岩上覆岩系"的岩石地球化学特征和地球动力学意义.中国科学院地质研究所博士论文.

    [53]

    [53]宋述光.1997.北祁连山俯冲杂岩带的构造演化.地球科学进展,12(4):351-365

    [54]

    [54]夏林圻,夏祖春,徐学义.1996.北祁连海相火山岩岩石成因.北京:地质出版社,74-129

    [55]

    [55]张旗,钱青,陈雨.1998.蛇绿岩、蛇绿岩上覆岩系及其与洋壳的对比.地学前缘,5(4):193-200

    [56]

    [56]张旗,孙晓猛,周德进,钱青,陈雨,王岳明,贾秀琴,韩松.1997.北祁连蛇绿岩的特征、形成环境及其构造意义.地球科学进展,12(4):366-393

    [57]

    [57]张旗,周国庆.2001.中国蛇绿岩.科学出版社

    [58]

    [58]张旗.蛇绿岩研究中的几个问题.1995.岩石学报,11(增刊):228-240

  • 加载中
计量
  • 文章访问数:  8524
  • PDF下载数:  6118
  • 施引文献:  0
出版历程
修回日期:  2000-12-28
刊出日期:  2001-08-31

目录