太行山北段王安镇杂岩体岩石学、年代学、地球化学特征及地质意义

张海东, 刘建朝, 王金雅, 张苏楠, 胡波, 王得权, 韩松. 太行山北段王安镇杂岩体岩石学、年代学、地球化学特征及地质意义[J]. 岩石学报, 2016, 32(3): 727-745.
引用本文: 张海东, 刘建朝, 王金雅, 张苏楠, 胡波, 王得权, 韩松. 太行山北段王安镇杂岩体岩石学、年代学、地球化学特征及地质意义[J]. 岩石学报, 2016, 32(3): 727-745.
ZHANG HaiDong, LIU JianChao, WANG JinYa, ZHANG SuNan, HU Bo, WANG DeQuan, HAN Song. Petrology, geochronology and geochemistry characteristics of Wang'anzhen complex in the northern Taihang Mountain and their geological significance.[J]. Acta Petrologica Sinica, 2016, 32(3): 727-745.
Citation: ZHANG HaiDong, LIU JianChao, WANG JinYa, ZHANG SuNan, HU Bo, WANG DeQuan, HAN Song. Petrology, geochronology and geochemistry characteristics of Wang'anzhen complex in the northern Taihang Mountain and their geological significance.[J]. Acta Petrologica Sinica, 2016, 32(3): 727-745.

太行山北段王安镇杂岩体岩石学、年代学、地球化学特征及地质意义

  • 基金项目:

    本文受国家自然科学基金项目(41402042、41002064)、中国地质调查局项目(12120114021001)和中央高校项目(CHD2011ZY005、310827152015、310827151057)联合资助.

Petrology, geochronology and geochemistry characteristics of Wang'anzhen complex in the northern Taihang Mountain and their geological significance.

  • 王安镇杂岩体主要由花岗闪长岩、二长花岗岩、花岗岩、石英闪长岩、二长闪长岩组成,LA-ICP-MS锆石U-Pb测年显示,花岗闪长岩和石英闪长岩分别形成于129±2.7Ma和128.3±1.9Ma,说明该杂岩体形成于早白垩世。王安镇杂岩体具有高Sr/Y比值(3.63~83.5),和高Sr(373×10-6~821×10-6),及低Y(7.36×10-6~22.21×10-6)、Yb(0.95×10-6~1.27×10-6)含量的地球化学特征,这与埃达克岩相似。该杂岩体具有相对低的87Sr/86Sr初始比值(0.706538~0.709484)和明显偏低的εNd(128Ma)值(-18.4~-12.8)。结合太行山中生代中-基性侵入岩中地幔包体已有的研究成果,认为具有高Sr/Y特征的王安镇杂岩体是在下地壳发生大规模拆沉的基础上,随着软流圈上涌其所携带的热促使加厚基性下地壳发生部分熔融,之后熔融岩浆在上升的过程中发生了角闪石的结晶分异和岩浆混合作用形成。
  • 加载中
  • [1]

    Cai JH, Yan GH, Chang ZS, Wang XF, Shao HX and Chu ZY. 2003. Petrological and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrologica Sinica, 19(1):81-92(in Chinese with English abstract)

    [2]

    Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1):33-51

    [3]

    Chen B and Zhai MG. 2003. Geochemistry of Late Mesozoic lamprophyre dykes from the Taihang Mountains, North China, and implications for the sub-continental lithospheric mantle. Geological Magazine, 140(1):87-93

    [4]

    Chen B, Tian W, Zhai MG and Arakawa Y. 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(1):13-24(in Chinese with English abstract)

    [5]

    Chen B, Chen ZC and Jahn BM. 2009. Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton. Lithos, 110(1-4):343-358

    [6]

    Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang LQ. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11):1021-1024

    [7]

    Core DP, Kesler SE and Essene EJ. 2006. Unusually Cu-rich magmas associated with giant porphyry copper deposits:Evidence from Bingham, Utah. Geology, 34(1):41-44

    [8]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294):662-655

    [9]

    Deng JF, Zhao HL, Mo XX and Luo ZH. 1996. Continental Roots-plume Tectonics of China:Key to the Continental Dynamics. Beijing:Geological Publishing House(in Chinese)

    [10]

    DePaolo DJ. 1981. Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2):189-202

    [11]

    Fan WM, Guo F, Wang YJ, Lin G and Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):733-746

    [12]

    Gao S, Rudnick RL, Carlson RW, McDonough WF and Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3-4):307-322

    [13]

    Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019):892-897

    [14]

    Gao S, Rudnick RL, Xu WL et al. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2):41-53

    [15]

    Gao YF, Santosh M, Hou ZQ, Wei RH, Ma GX, Chen ZK and Wu JL. 2012. High Sr/Y magmas generated through crystal fractionation:Evidence from Mesozoic volcanic rocks in the northern Taihang orogeny, North China Craton. Gondwana Research, 22(1):152-168

    [16]

    Griffin WL, Zhang AD, O'Reilly SY and Ryan CG. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In:Flower MFJ, Chung SL, Lo CH and Lee TY(eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington, DC:American Geophysical Union, 27:107-126

    [17]

    Hou ZQ, Pan XF, Li QY, Yang ZM and Song YC. 2013. The giant Dexing porphyry Cu-Mo-Au deposit in East China:Product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita, 48(8):1019-1045

    [18]

    Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2):119-146

    [19]

    Jiao ST, Yan DP, Zhang Q, Li CD, Wan B and Tian ZH. 2013. Zircon U-Pb age, geochemistry characteristics of Badaling granitoid complex and their geological significance. Acta Petrologica Sinica, 29(3):769-780(in Chinese with English abstract)

    [20]

    Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H and Woollry AR. 2002. Igneous Rocks:A Classification and Glossary of Terms. Cambridge:Cambridge University Press, 125-236

    [21]

    Lee C-TA and Anderson DL. 2015. Continental crust formation at arcs, the arclogite "delamination" cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13):1141-1156

    [22]

    Ma Q, Zheng JP, Xu YG, Griffin WL and Zhang RS. 2015. Are continental "adakites" derived from thickened or foundered lower crust? Earth and Planetary Science Letters, 419:125-133

    [23]

    Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publication, 76:71-78

    [24]

    Menzies MA, Xu YG, Zhang HF and Fan WM. 2007. Integration of geology, geophysics and geochemistry:A key to understanding the North China craton. Lithos, 96(1-2):1-21

    [25]

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81

    [26]

    Peng TP, Wang YJ, Fan WM, Guo F and Peng BX. 2004. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China interior and its petrogenesis. Acta Petrologica Sinica, 20(5):1253-1262(in Chinese with English abstract)

    [27]

    Qian Q and Hermann J. 2010. Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. Journal of Petrology, 51(7):1381-1416

    [28]

    Qian Q, O'Neill HSC and Hermann J. 2010. Comparative diffusion coefficients of major and trace elements in olivine at~950℃ from a xenocryst included in dioritic magma. Geology, 38(4):331-334

    [29]

    Richards JP, Ullrich T and Kerrich R. 2006. The Late Miocene-Quaternary antofalla volcanic complex, southern Puna, NW Argentina:Protracted history, diverse petrology, and economic potential. Journal of Volcanology and Geothermal Research, 152(3-4):197-239

    [30]

    Richards JP and Kerrich R. 2007. Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4):537-576

    [31]

    Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3):267-309

    [32]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implication for mantle compositions and processes. In:Sauders AD and Norry MJ(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345

    [33]

    Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution:An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford:Oxford Press Blackwell, 1-312

    [34]

    Wang CG, Xu WL, Wang F and Yang DB. 2011. Petrogenesis of the Early Cretaceous Xi'anli hornblende-gabbros from the southern Taihang Mountains:Evidence from Zircon U-Pb geochronology, Hf isotope and whole-rock geochemistry. Earth Science, 36(3):471-482(in Chinese with English abstract)

    [35]

    Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006a. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1):119-144

    [36]

    Wang YJ, Fan WM, Zhang HF and Peng TP. 2006b. Early Cretaceous gabbroic rocks from the Taihang Mountains:Implications for a paleosubduction-related lithospheric mantle beneath the central North China craton. Lithos, 86(3-4):281-302

    [37]

    Wu FY, Sun DY, Zhang GL and Ren XW. 2000. Deep geodynamics of Yanshain Movement. Geological journal of China Universities, 6(3):379-388(in Chinese with English abstract)

    [38]

    Wu FY, Walker RJ, Ren XW, Sun DY and Zhou XH. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 196(1-4):107-129

    [39]

    Wu FY, Lin JQ, Wilde SA, Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2):103-119

    [40]

    Wu FY, Walker RJ, Yang YH, Yuan HL and Yang JH. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta, 70(19):5013-5034

    [41]

    Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China craton. Acta Petrologica Sinica, 24(6):1145-1174(in Chinese with English abstract)

    [42]

    Wyllie PL, Cox KG and Biggar GM. 1962. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 3(2):238-243

    [43]

    Xu WL, Gao S, Wang QH, Wang DY and Liu YS. 2006. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology, 34(9):721-724

    [44]

    Xu WL, Yang DB, Pei RF and Yu Y. 2009. Petrogenesis of Fushan high-Mg# diorites from the southern Taihang Mts. in the central North China craton:Resulting from interaction of peridotite-melt derived from partial melting of delaminated lower continental crust. Acta Petrologica Sinica, 25(8):1947-1961(in Chinese with English abstract)

    [45]

    Xu WL, Wang CG, Yang DB, Wang F and Pei FP. 2010a. Dunite xenoliths and olivine xenocrysts in gabbro from Taihang Mountains:Characteristics of Mesozoic lithospheric mantle in central China. Journal of Earth Science, 21(5):692-710

    [46]

    Xu WL, Yang DB, Gao S, Pei FP and Yu Y. 2010b. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the central orogenic block of the North China craton:The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chemical Geology, 270(1-4):257-273

    [47]

    Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):747-757

    [48]

    Xu YG. 2014. Recycled oceanic crust in the source of 90~40Ma basalts in North and Northeast China:Evidence, provenance and significance. Geochimica et Cosmochimica Acta, 143:49-67

    [49]

    Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4):145-160

    [50]

    Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3):357-370

    [51]

    Zartman RE and Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2):135-162

    [52]

    Zhai MG, Fan QC, Zhang HF and Sui JL. 2005. Lower crust processes during the lithosphere thinning in eastern China:Magma underplating, replacement and delamination. Acta Petrologica Sinica, 21(6):1509-1526(in Chinese with English abstract)

    [53]

    Zhai MG. 2011. Cratonization and the ancient North China continent:A summary and review. Science China(Earth Sciences), 54:1110-1120

    [54]

    Zhang HD, Liu JC, Chen ZL, Chen BL, Peng SX and Men WH. 2014. Petrogensis of the Pingshun complexes in the southern Taihang Mountains:Petrology, geochronology and geochemistry. Geotectonica et Metallogenia, 38(2):454-471(in Chinese with English abstract)

    [55]

    Zhao GC, Cawood PA, Wilde SA, Sun M and Lu LZ. 2000. Metamorphism of basement rocks in the central zone of the North China craton:Implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2):55-88

    [56]

    Zhao GC, Wilde S A, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2):45-73

    [57]

    Zheng JP, Griffin WL, O'Reilly SY, Yu CM, Zhang HF, Pearson N and Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China craton:Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 71(21):5203-5225

    [58]

    Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571

    [59]

    蔡剑辉, 阎国翰, 常兆山, 邵宏翔, 储著银. 2003. 王安镇岩体岩石地球化学特征及成因探讨. 岩石学报, 19(1):81-92

    [60]

    陈斌, 田伟, 翟明国, 荒川洋二. 2005. 太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义. 岩石学报, 21(1):13-24

    [61]

    邓晋福, 赵海玲, 莫宣学, 罗照华. 1996. 中国大陆根-柱构造:大陆动力学的钥匙. 北京:地质出版社

    [62]

    焦守涛, 颜丹平, 张旗, 李承东, 万博, 田忠华. 2013. 八达岭花岗岩的年龄、地球化学特征及其地质意义. 岩石学报, 29(3):769-780

    [63]

    彭头平, 王岳军, 范蔚茗, 郭锋, 彭冰霞. 2004. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究. 岩石学报, 20(5):1253-1262

    [64]

    王春光, 许文良, 王枫, 杨德彬. 2011. 太行山南段西安里早白垩世角闪辉长岩的成因:锆石U-Pb年龄、Hf同位素和岩石地球化学证据. 地球科学, 36(3):471-482

    [65]

    吴福元, 孙德有, 张广良, 任向文. 2000. 论燕山运动的深部地球动力学本质. 高校地质学报, 6(3):379-388

    [66]

    吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6):1145-1174

    [67]

    许文良, 杨德彬, 裴福萍, 于洋. 2009. 太行山南段符山高镁闪长岩的成岩——拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果. 岩石学报, 25(8):1947-1961

    [68]

    翟明国, 樊祺诚, 张宏福, 隋建立. 2005. 华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用. 岩石学报, 21(6):1509-1526

    [69]

    张海东, 刘建朝, 陈正乐, 陈柏林, 彭素霞, 门文辉. 2014. 太行山南段平顺杂岩体成因:岩石学、年代学和地球化学证据. 大地构造与成矿学, 38(2):454-471

  • 加载中
计量
  • 文章访问数:  4872
  • PDF下载数:  6324
  • 施引文献:  0
出版历程
收稿日期:  2015-03-20
修回日期:  2015-10-21
刊出日期:  2016-03-31

目录