微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义

孟祥化 葛铭 旷红伟 J K Nielsen. 微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义[J]. 岩石学报, 2006, 22(8): 2133-2143.
引用本文: 孟祥化 葛铭 旷红伟 J K Nielsen. 微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义[J]. 岩石学报, 2006, 22(8): 2133-2143.
MENG XiangHua , GE Ming , KUA.NG HongWei , Nielsen J K. Origin of Microsparite carbonates and the significance in the evolution of the Earth in Proterozoic[J]. Acta Petrologica Sinica, 2006, 22(8): 2133-2143.
Citation: MENG XiangHua , GE Ming , KUA.NG HongWei , Nielsen J K. Origin of Microsparite carbonates and the significance in the evolution of the Earth in Proterozoic[J]. Acta Petrologica Sinica, 2006, 22(8): 2133-2143.

微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义

  • 基金项目:

    本文得到国际地质对比计划IGGP447项目(编号:SC/GE0/546/447)、科技部国家重点基础研究项目(001GB7 11002),国家自科科学基金(编号:40172043,40572073)和中国地质调查局项目(编号:200313000055)资助.致谢 本文得到国际地质对比计划IGCP447项目(编号:SC/GE0/546/447)、科技部国家重点基础研究项目(001CB711002).国家自然科学基金(编号:40172043,40572073),中国地质调查局项目(编号:20031300005

Origin of Microsparite carbonates and the significance in the evolution of the Earth in Proterozoic

  • 本文应用多种技术方法,对微亮晶碳酸盐岩的成岩作用及其成因从宏观至微观进行了分析,根据岩石矿物学、地球化学和有机地球化学等研究证明,它是早期成岩过程中,在超高压的大气CO2水平急剧下降的转折期,快速石化作用形成的具等粒结构μm级的微亮晶方解石集合体。MT碳酸盐岩微亮晶成岩作用有两种类型:一是主要发生在海底沉积软泥中,在其成基质软混中经差异压实作用形成褶皱肠状及复杂形的MT构造;二是直接在海水中或重力流搬运过程中形成的微亮晶球粒(核)。简言之,MT碳酸盐岩石是在地球早期浅海环境下,由于微生物自养作用形成的地球化学成因产物。微亮晶碳酸盐齿是约束古大气圈和古海洋环境变化的最灵敏标志。通过详测MT丰度值和编制地球古大气圈CO2水平演化模或等.在前寒武纪发现有太古宙末期、早元古宙末期、中元古宙中期和新元古宙早-中期四个MT碳酸盐岩发育高峰值期,证明全球古大气圈CO2水平发生过四次不连续性、跳跃式下降周期,直到晚新元古宙末,全球雪球事件的发生.导致了MT碳酸盐岩的消失,其后,才进入显生宙的CO2低水平状态。MT醚酸盐岩具有重要的油气资源远景,应予以重视。
  • 加载中
  • [1]

    Don Winston.2003. Middle Proterozoic Carbonates and related rocks of the Belt Supergroup.Montana USA.Field trip guidebook of IGCP447:Proterozoic Molar tooth Carbonates

    [2]

    Frank T D and Lyons T W.1998.\'Molar-tooth\' structures:a geochemical perspective on a Proterozoic enigma.Geology,26,683 -686

    [3]

    Furniss G,Rittle J F and Winston D.1998. Gas bubble and expansion crack origin of "molar tooth" calcite structures in the Middle Proterozoic Belt Supergroup,Western Montana:Journal of Sedimentary Research,Vol.68,104-114

    [4]

    Gillson J L.1929. Contact metamorphism of the rocks in the Pend Oreille district,northern Idaho.U.S.Geol.Survey Prof,Paper158-F:111-121

    [5]

    Ge M,Meng X H,Kuang H W,et al.2003. Molar-tooth carbonates:Carbonates research highlight of the world in the 21st century.Acta Sedimentological Sinica,21 (1):81 -89 (in Chinese)

    [6]

    Hoffman P F.1998. The breakup of Rodinia,birth of Gondwana,true polar wander and the snowball Earth,Journal of African,Earth science,28:17-33

    [7]

    Horodyski R J.1976. Stromatolites of the upper Siyeh Limestone (Middle Proterozoic),Belt Supergroup,Glacier National Park.Montana.Precambrian Research,3:517-536

    [8]

    James,N P,Narbonne G M and Sherman A G.1998. Molar-tooth carbonates:shallow subtidal facies of the mid-late Proterozoic.Journal of Sedimentary Research,68:716 -722

    [9]

    Kasting,J.F.1993. Earth\'s early atmosphere.Science,259,920-926

    [10]

    Krumbein W E.Translated by Yang C Y,Zhang Y,Liu R X et al.1985. Microbial geochemistry.Beijing:Geological Publishing House,174-185 (in Chinese)

    [11]

    Meng X H and Ge M.2004. Cyclic Sequences,Events and the Evolution of the Sino-Korean Plate.Beijing.Science press.108-156 (in Chinese)

    [12]

    Meng X H,Ge M,Cai G Y,et al.2002. Cyclic sequences of the dissolutive evaporate series and the origin of the seepage pipe structure of the Da Linzi formation in the Lower Cambrian.Vol.47(14):1113-1117(in Chinese)

    [13]

    O\'Connor M P.1976. Classification and Environmental Interpretation of the cryptalgal organo -sedimentary "molar-tooth" structure of the Precambrian Belt-Purcell Supergroup:Journal of Geology,Vol.80,592 -610

    [14]

    Pratt B R.1992. Shrinkage features (" molar tooth" structure) in Proterozoic limestones new model for their origin through synsedimentary earthquake-induced dewatering (abstract):Geological Society of America.Abstracts with Program,Vol.24,and No.7:53

    [15]

    Pratt B R.2001. Oceanography,bathymetry and syndepositional tectonics of a Precambrian intracratonic basin:integrating sediments,storms,earthquakes and tsunamis in the Belt Supergroup (Helena Formation,ca.1.45 Ga),western North America.Sedimentary Geology,141-142:371 -394

    [16]

    Plfug H D.1968. Gesteinbildende organismen aus Molar Tooth Limestone der Beltserie (Praekambrium),Palaeontographica Abteilung B.Palaeophytologie,121:134-141

    [17]

    Pratt B R.1999. Gas bubble and expansion crack origin molar-tooth calcite structures in the Middle Proterozoic Belt Supergroup,Western Montana-Discussion,Journal of Sedimentary Reseach.Vol.69,1136-1140

    [18]

    Pratt B R.2001. Oceanography,bathymetry and syndepositional tectonics of a Precambrian intracratonic basin:integrating sediments,storms,earthquakes and tsunamis in the Belt Supergroup (Helena Formation,ca.1.45 Ga),western North America.Sedimentary Geology,141-142:371 -394

    [19]

    Ross C P.1959. The geology of Glacier National Park and the Flathead region,northwestern Montana:U.S.Geol.Survey Prof.Paper,296:125

    [20]

    Shields G A.2002."Molar-tooth microspar":a chemical explanation for its disappearance ~ 750 Ma.Terra Nova,14:108-113

    [21]

    Smith A G.1968. The origin and deformation of some "molar tooth"structures in the Precambrian Belt-Purcell Supergroup:Journal of Geology,Vol.76,426 -443

    [22]

    Tucker M E and Wright V P.1990. Carbonate sedimentology.Oxford.Blackwell Scientific Publications.33-34

    [23]

    Wang Y H,Bao Z D,Zhou T F et al.1995. Research on occurrence and migratory during geochemistry deposit of Sn-Example:Upper Triassic to Lower Jurassic on East Guangdong,see Wang Y H,et al.New progress on sedimentology and lithofacies.662 -665.(in Chinese)

    [24]

    Wignall P.B.1994. Black shales.Oxford monographs on geology and geophysics,30,Clarendon Press,Oxford,127

    [25]

    Yang J D and Zhen W W 2001. Decision boundary of the upper Precambrian in the north Suwan by Sr,C isotopes.Journal of Stratigraphy,Vol.25 (1),44-47

    [26]

    Zhen W W,Yang J D and Hong T Q.2002. Correlation between Sr and C isotope of the upper Precambrian in the north Suwan and south of Liaoning by Sr,C isotopes.Journal of Stratigraphy,Vol.26(4):376-382(in Chinese)

    [27]

    Krumbein W E 主编.1985.杨承运,张昀,刘瑞珣等.微生物地球化学,北京:地质出版社.174-185

    [28]

    葛铭,孟祥化,蔡国印,旷红伟,刘燕学.2003.微亮晶(臼齿)碳酸盐岩:21世纪全球地学研究的新热点.沉积学报,21(1):82-90

    [29]

    孟祥化,葛铭,蔡国印,旷红伟,刘燕学.2002.下寒武统大林子组溶解蒸发岩系旋回层序及渗流构造成因,科学通报,Vol.47(14):1113-1117

    [30]

    孟祥化,葛铭.2004.中朝板块层序、事件和演化.科学出版社.108-156

    [31]

    王英华,鲍志东,朱筱敏.1995.锡在沉积地球化学过程中赋存与迁移的探讨-以粤东地区上三叠统-下侏罗统为例,沉积学及岩相古地理学新进展,石油工业出版社.662-665

    [32]

    杨杰东,郑文武.2001. Sr、C同位素对苏皖北部上寒武系时代的界定.地层学杂志,Vol.25(1):44-47

    [33]

    郑文武,杨杰东,洪天求等.2002.辽南与苏皖北部上前寒武系Sr,C同位素对比,地层学杂志,26(4):376-382

  • 加载中
计量
  • 文章访问数:  5915
  • PDF下载数:  4161
  • 施引文献:  0
出版历程
收稿日期:  2005-02-28
修回日期:  2006-04-16
刊出日期:  2006-08-31

目录