安徽铜陵冬瓜山铜(金)矿床成矿模式

陆建军,郭维民,陈卫锋,蒋少涌,李娟,颜晓蓉,徐兆文. 安徽铜陵冬瓜山铜(金)矿床成矿模式[J]. 岩石学报, 2008, 24(8).
引用本文: 陆建军,郭维民,陈卫锋,蒋少涌,李娟,颜晓蓉,徐兆文. 安徽铜陵冬瓜山铜(金)矿床成矿模式[J]. 岩石学报, 2008, 24(8).
LU JianJun,GUO WeiMin,CHEN WeiFeng,JIANG ShaoYong,LI Juan,YAN XiaoRong,XU ZhaoWen. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province[J]. Acta Petrologica Sinica, 2008, 24(8).
Citation: LU JianJun,GUO WeiMin,CHEN WeiFeng,JIANG ShaoYong,LI Juan,YAN XiaoRong,XU ZhaoWen. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province[J]. Acta Petrologica Sinica, 2008, 24(8).

安徽铜陵冬瓜山铜(金)矿床成矿模式

  • 基金项目:

    国家自然科学基金,教育部高等学校博士学科点专项科研基金

A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province

  • 长江中、下游断裂坳陷带是我国重要的铜、金、铁、硫成矿带,存在一系列块状硫化物矿床及与其伴生的矽卡岩型和斑岩型矿床.本文以铜陵矿集区冬瓜山铜、金矿床为例,探讨了这类矿床的成矿模式.冬瓜山矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.层状硫化物矿体产于晚泥盆世砂岩和晚石炭世碳酸盐岩之间,具明显的层控特征,矿体下盘发育细脉-网脉状硫化物矿化以及硅化和绢云母化,矿体中伴有热水沉积岩,矿石具典型的沉积构造.燕山期岩浆热液对层状矿体进行了叠加和改造,改变了矿石的结构构造和矿石成分.黄铜矿交代黄铁矿变斑晶呈环斑结构或脉状交代结构,交代磁黄铁矿呈交代假象结构或交代残留结构.矽卡岩型矿体中黄铜矿的δ65Cu值为0.09‰~0.83‰,集中在0.23‰~0.83‰.层状矿体中黄铜矿的δ65Cu值为0.45‰~0.78‰,与矽卡岩矿体中黄铜矿的65Cu值大致相当,这说明两类矿体中的铜具有相同的来源.铜、氢和氧同位素研究表明,冬瓜山矿床铜来自岩浆岩,叠加的成矿流体主要为岩浆流体.提出了冬瓜山矿床属喷流沉积-岩浆热液叠生成因的成矿模式:在晚石炭世,海底喷流成矿作用形成了块状硫化物矿床,矿石成分以硫、铁为主;燕山期岩浆热液一方面对块状硫化物矿床进行改造,致使其富集铜等成矿物质,另一方面与围岩相互作用形成矽卡岩型和斑岩型矿体.
  • 加载中
  • [1]

    Chang YF and Liu XG. 1983. On strata-bound skarn deposits. Mineral Deposits, 2( 1 ) : 11 -20

    [2]

    Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological publishing House, 1 - 379

    [3]

    Claypool DE, Mullins HT, Sakai IR et al. 1980. The age curves for sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 8 : 173 - 174

    [4]

    Clayton RN, O\\'Neil JR and Mayeda TK. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysics Research, 77: 3057 - 3067

    [5]

    Franklin JM, Lydon JW and Sanster DF. 1981, Volcanogenic massive sulphide deposits. Enco. Geol. 75^th Anniv. Vol. :458-627

    [6]

    Gu LX, Hu WX, He JX et al. 1993. Geology and genesis of the Upper Palaeozoic massive sulphide deposits in south China. Transactions of the Institution of Mining and Metallurgeny. Section B : Applied Ea~ Science, 83 - 96

    [7]

    Gu LX, Hu WX, He JX et al. 2000. Regional variations in ore composition and fluid features of massive sulphide deposits in south China: Implications for genetic modeling. Episodes, 23 : 110 - 118

    [8]

    Gu LX and Xu KQ. 1986a. On the Carboniferous submarine massive sulphide deposits in the lower reaches of the Changiiang (Yangzi) River. Acta Geologica Sinica, 2:176 - 188

    [9]

    Gu LX and Xu KQ. 1986b. On the South China-type massive sulphide deposits formed on marine fault depression troughs on the continental crust. Mineral Deposits, 5 (2): 1 -13

    [10]

    Gu LX and Yang H. 1989. Footwall mineralization of the south China type massive sulphide deposits. Geological Review, 35 (4) : 307 - 313

    [11]

    Huang XC and Chu GZ. 1992. Types of ore deposits, metallogenetic series and characteristics, Tongling. Geology of Anhui, 2(4) : 53 - 61

    [12]

    Huang XC and Chu GZ. 1993. Multistory metallogenic model of the Shizishan orefield in Tongling, Anhui Province. Mineral Deposits, 12 (3) : 221 -230

    [13]

    Jiang SY, Woodhead J, Yu JM et al. 2002. A reconnaissance of Cu isotopic compositions of hydrothermal vein-type copper deposit, Jinman, Ynnnan, China. Chinese Science Bulletin, 47 (3) : 247 - 250

    [14]

    Larson PB, Maher K, Ramos FC et al. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201:337-350

    [15]

    Laznicka PI 2006. Giant Metallic Deposits. Springer-Verlag Berlin Heidelberg, 1-732

    [16]

    Li HY, Yang ZS, Meng YF et al. 2004. Geological characteristics of massive sulfide deposits in Tongling ore concentration area, Anhui Province. Mineral Deposits, 23 ( 3 ) : 327 - 333

    [17]

    Li WD. 1989. On the Yangtze type copper ore deposits and its orion. Bulletin of the Nanjing Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 10 ( 2 ) : 1 - 14

    [18]

    Li WD, Wang WB, Fan HY et al. 1997. The conditions to form copper (gold) ore deposit concentrated areas and the possibilities to discover supergigantic copper (gold) ore deposit in Middle-Lower Yangtze area. Vocanology and Mineral Resources, 20 ( Supp. ) : 1 -131

    [19]

    Liu YQ and Liu ZL. 1991. Isotope geochemistry and genesis of the stratiform copper (iron-sulfur) deposits in Tongling area, Anhui Province. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1 : 47 - 114

    [20]

    Lu JJ, Hua RM and Jiang SY. 2003a. Copper isotope study of copper and gold deposit of Dongguashan, China. Geochimica et Cosmochimiea Acta, Special Supplement : A260

    [21]

    Lu JJ, Hua RM, Xu ZW et al. 2003b. A two-stage model for formation of the Dongguashan Cu-Au deposit. Geological Journal of China Universities, 9(4) : 678 -690

    [22]

    Lydon JW. 1988. Volcanogenic massive sulphide deposits. Part2: Genetic models. Geoscience Canada, 15:43 -65

    [23]

    Lydon JW. 2000. A synopsis of the current understanding of the geological environment of the Sullivan deposit. In: Lydon JW, H? y TH and Slack JF et al. ( eds. ). The Geological Environment of the Sullivan Deposit, British Columbia. Geological Association of Canada, Mineral Deposits Division, Special Publication, No, 1:12-31

    [24]

    Maher KC and Larson P. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skam mineralization at Coroecohuayco and Tintaya, Peru. Econ. Geol. , 102:225 - 237

    [25]

    Mao JW, Stein H, Du AD et al. 2004. Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78 ( 1 ) : 121 - 131

    [26]

    Marechal CN, Telouk P and Albarede F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156 : 251 -273

    [27]

    Mei YX, Mao JW, Li JW et al. 2005. Re-Os dating of molybdenite from stratiform skarn orebodies in the Datuanshan copper deposit, Tongling, Anhui Province, and its geological significance. Acta Geoscientica Sinica, 26 ( 4 ) : 327 - 331

    [28]

    Meng XM. 1963. Classification research of ore deposits. In: Collection of Papers for Mineral Resources Research. Beijing: Science Press, 1 - 72

    [29]

    Meng YF, Yang ZS, Zeng PS et al. 2004. Tentative temporal constraints of ore-forming fluid systems in Tongling metallogenic province. Mineral Deposits, 23 ( 3 ) : 271 - 280

    [30]

    Moore DW, Young LE, Modene JS et al. 1986. Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, Western Brooks range, Alaska. Economic Geology, 81:1696- 1727

    [31]

    Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. In: Valey JW, Taylor HP, O\\'Neil JR (eds.). Stable Isotopes in High Temperature Geological Processes. Reviews in mineralogy, 16, Min. Soc. Am. , 491 -559

    [32]

    Pan Y and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15 : 177 - 142

    [33]

    Pirajno F. 1992. Hydrothermal Mineral Deposits. Springer-Verlag Berlin Heidelberg, 1 - 709

    [34]

    Sangster DF. 1976. Sulfur and lead isotopes studies in strata-bound deposits of calc-alkaline affiliation. Geol. Assoc. Canada. Spec. Paper, 14:154

    [35]

    Robb L. 2005. Introduction to Ore-Forming Processes. Blackwell Publishing, 1 - 373

    [36]

    Tang YC, Wu YC and Chu GZ. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1- 351

    [37]

    Wang DH, Fu DX, Wu LX et al. 1986. The stable isotopic features of the Middle-Carboniferous " sedimentary-submarine effusivehydrothermal" bedded Cu (Zn, Pb ) ore deposits in the Lower Yangtze area. Bulletin of the Nanjing Institute of Geology and Mineral Resources, Chinese Academy of geological Sciences, 7 (20) : 1 - 25

    [38]

    Wang WB, Li WD, Dong P et al. 1994. The genesis of cupriferous pyrite deposits, Middle-Lower Yangtze area, eastern China. Volcanology and Mineral Resources. 15 (2) : 25 - 34

    [39]

    Wen CQ, Huang HS and Liu ZL. 1996. Ore fabric characteristics of copper-iron deposits in Tongling district, Anhui, China. Journal of Chengdu Institute of Technology, 23 (2) : 7 - 15

    [40]

    Xie HG, Wang WB and Li WD. 1995. The genesis and metallogenetic epoch of Xinqiao Cu-S deposit, Anhui. Volcanology and Mineral Resources, 16(2) : 101 -107

    [41]

    Xu KQ and Zhu JC volcanosedimentary- ) 1978. Origin of iron-copper deposits in belts in Southeast China. Fujian Geology, 4 the sedimentary-( or some fault depression 1 -68

    [42]

    Xu KQ, Zhu JC and Ren QJ. 1980. Origin of some iron and copper deposits in the fault depressions of Southeast China. In : Collection of Geological Papers for International Exchange. Beijing: Geological Publishing House, 49 -58

    [43]

    Xu JH, Xie YL, Yang ZS et al. 2004. Trace elements in fluid inclusions of submarine exhalation-sedimentation system in Tongling metallogenetic province. Mineral Deposits, 23 (3) : 344 - 352

    [44]

    Xu WY, Yang ZS, Meng YF et al. 2004. Genetic model and dynamic migration of ore-forming fluids in Carboniferous exhalationsedimentary massive sulfide deposits of Tongling district, Anhui Province. Mineral Deposits, 23 ( 3 ) : 353 - 364

    [45]

    Xu ZW, Lu XC, Ling I-IF et al. 2005. Metallogenetic mechanism and timing of late superimposing fluid mineralization in the Dongguashan diplogenetic stratified copper deposit, Anhui Province. Acta Gcologica Sinica, 79 (3) : 405 - 413

    [46]

    Xu ZW, Lu XC, Gao Get al. 2007. Isotope geochemistry and mineralization in the Dongguashan stratified copper deposit, Tongling area. Geological Review, 53( 1 ) : 44 -51

    [47]

    Yan XY and Yuan CX. 1977. Carboniferous submarine exhalative sedimentary pyrite type copper deposit. Journal of Nanjing University ( Natural Sciences ), ( 1 ) : 43 - 67

    [48]

    Yang ZS, Hou ZQ, Meng YF et al. 2004. Spatial-temporal structure of Hercynian exhalative-sedimentary fluid system in Tongling ore concentration area, Anhui Province. Mineral Deposits, 23 (3) : 281 -297

    [49]

    Zhai ~S, Yao SZ, Lin XD et al. 1992. Fe-Cu (Au) Metallogeny of the Middle - Lower Changjiang Region. Beijing: Geological Publishing House, 1 -235

    [50]

    Zeng PS, Pei RF, Hou ZQ et al. 2002. SEDEX-type massive deposits in Tongling Block, Anhui, China. Mineral Deposits, 22 ( Suppl. ), 532 -535

    [51]

    Zeng PS, Yang ZS, Meng YF et al. 2004. Temporal-spatial configuration and mineralization of Yanshanian magmatic fluid systems in Tongling ore concentration area, Anhui Province. Mineral Deposits, 23 ( 3 ) : 298 -309

    [52]

    Zhou TF, Yuan F, Yue SC et al. 2000. Two series of copper-gold deposits in the Middle and Lower Reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Science in China (Series D), 43(supp. ) : 208 -218

    [53]

    Zhou TF, Fan Y and Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24 ( 8 ) : 1665 -1678

    [54]

    Zhu XK, O\\'Neil RK, Guo Y et al. 2000. Determination of natural Cuisotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163 : 139 - 149

    [55]

    安徽省地矿局321地质队.冬瓜山铜矿床详查地质报告[R].,1985.

  • 加载中
计量
  • 文章访问数:  10909
  • PDF下载数:  10776
  • 施引文献:  0
出版历程
刊出日期:  2008-08-31

目录