内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义

钟长汀, 邓晋福, 万渝生, 涂伟萍. 内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义[J]. 岩石学报, 2014, 30(11): 3172-3188.
引用本文: 钟长汀, 邓晋福, 万渝生, 涂伟萍. 内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义[J]. 岩石学报, 2014, 30(11): 3172-3188.
ZHONG ChangTing, DENG JinFu, WAN YuSheng, TU WeiPing. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance[J]. Acta Petrologica Sinica, 2014, 30(11): 3172-3188.
Citation: ZHONG ChangTing, DENG JinFu, WAN YuSheng, TU WeiPing. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance[J]. Acta Petrologica Sinica, 2014, 30(11): 3172-3188.

内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义

  • 基金项目:

    本文受国家自然科学基金项目(49802008)和国土资源部"百人优秀青年计划"项目联合资助.

Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance

  • 内蒙古大青山地区沿固阳-武川断裂带南侧发现一条古元古代花岗岩岩带,由石英闪长岩-闪长岩-角闪二长花岗岩组合构成.本文对其中典型代表厂汉脑包石英闪长岩、常福龙闪长岩和口子村角闪二长花岗岩进行了锆石定年和地球化学研究.地球化学上,石英闪长岩具有埃达克质花岗岩的特点,为低硅埃达克质花岗岩;大部分闪长岩具有赞岐岩的地球化学特征,部分具Closepet花岗岩特征;角闪二长花岗岩则全部具有Closepet花岗岩特征.根据锆石SHRIMP U-Pb定年,它们形成于2416~2435Ma之间,并遭受古元古代晚期构造热事件改造.表明在该区古元古代早期真正意义的板块构造已起作用,从岩浆演化的角度说明前寒武纪构造体制发生重大转变.
  • 加载中
  • [1]

    Arculus RJ, Lapierrre H and Jaillard E. 1999. Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27(6): 547-550

    [2]

    Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146

    [3]

    Beard JS and Lofgren GE. 1989. Effect of water on the composition of partial melts of greenstones and amphibolites. Science, 244(4901): 195-197

    [4]

    Beard JS and Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9kb. J. Petrol., 32(2): 365-401

    [5]

    Belousova EA, Griffin WL, O'Reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143(5): 602-622

    [6]

    Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite study. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114

    [7]

    Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights into the source of adakite and other lavas in a complex arc tectonic setting. Contrib. Mineral. Petrol., 134(1): 33-51

    [8]

    Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 257-268

    [9]

    Champion DC and Smithies RH. 2003. Slab melts and related processes: Archaean versus recent. In: Arima M, Nakajima T and Ishihara S (eds.). Hutton Symposium V, the Origin of Granites and Related Rocks. Geological Survey of Japan, 19

    [10]

    Condie KC. 2005. TTGs and adakites: Are they both slab melts? Lithos, 80(1-4): 33-44

    [11]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [12]

    Defant MJ, Richerson PM, De Boer JZ et al. 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada volcanic complex, Panama. J. Petrol., 32(6): 1101-1142

    [13]

    Defant MJ, Jackson TE, Drummond MS, De Boer JZ, Bellen H, Feigeson MD and Maury RC. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. J. Geol. Soc., 149(4): 569-579

    [14]

    Defant MJ, Xu JF, Kepezhinsksa P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142 (in Chinese with English abstract)

    [15]

    Deng JF, Wu ZX, Zhao GC, Zhao HL, Luo ZH and Mo XX. 1999. Precambrian granitic rocks, continental crustal evolution and craton formation of the North China Platform. Acta Petrologica Sinica, 15(2): 190-198 (in Chinese with English abstract)

    [16]

    Dong XJ, Xu ZY, Liu ZH and Sha Q. 2012. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia. Science China (Earth Sciences), 55(2): 204-212

    [17]

    Drummond MS and Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophys. Res., 95(B13): 21503-21521

    [18]

    Drummond MS, Defant MJ and Kepezhinskas PK. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Geological Society of America Special Papers, 315: 205-215

    [19]

    Geng YS, Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945-1966 (in Chinese with English abstract)

    [20]

    Gerya T. 2014. Precambrian geodynamics: Concepts and models. Gondwana Research, 25(2): 442-463

    [21]

    Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ and Qian Q. 2005. SHRIMP dating and geological significance of late Archean high-Mg diorite (sanukite) and hornblende-granite at Guyan of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151-157 (in Chinese with English abstract)

    [22]

    Jian P, Kröner A, Windley BF, Zhang Q, Zhang W and Zhang LQ. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Research, 222-223: 230-254

    [23]

    Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397

    [24]

    Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35

    [25]

    Li JH, Qian XL, Huang CN and Liu SW. 2000. Tectonic framework of North China Block and its cratonization in the Early Precambrian. Acta Petrologica Sinica, 16: 1-10 (in Chinese with English abstract)

    [26]

    Liu SJ, Dong CY, Xu ZY, Santosh M, Ma MZ, Xie HQ, Liu DY and Wan YS. 2013. Paleoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton: Evidence from SHRIMP zircon dating of magmatic suites from the Daqingshan area. Geological Journal, 48(5): 429-455

    [27]

    Ludwig KP. 2001. Spuid 1.02: A user's manual. Berkeley Geochronology Centre, Special Publication, 2: 1-19

    [28]

    Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY and Guo C. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827

    [29]

    Ma MZ, Xu ZY, Zhang LC, Dong CY, Dong XJ, Liu SJ, Liu DY and Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica, 29(2): 501-516 (in Chinese with English abstract)

    [30]

    Ma XD Fan HR and Guo JH. 2013. Neoarchean magamatism, metamorphism in the Yinshan Block: Implication for the gensis of BIF and crustal evolution. Acta Petrologica Sinica, 29(7): 2329-2339 (in Chinese with English abstract)

    [31]

    Martin H. 1999. The adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429

    [32]

    Martin H and Moyen JF. 2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology, 30(4): 319-322

    [33]

    Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24

    [34]

    Martin H, Moyen JF and Rapp R. 2009. The sanukitoid series: Magmatism at the Archaean-Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15-33

    [35]

    McDonough WF, Sun SS, Ringwood AE, Jagoutz E and Hofmann AW. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et Cosmochimica Acta, 56(3): 1001-1012

    [36]

    Moyen JF, Martin H, Jayananda M and Auvray B. 2003a. Late Archaean granites: A typology based on the Dharwar Craton (India). Precambrian Research, 127(1-3): 103-123

    [37]

    Moyen JF, Nédélec A, Martin H and Jayananda M. 2003b. Syntectonic granite emplacement at different structural levels: The Closepet granite, South India. J. Struct. Geol., 25(4): 611-631

    [38]

    Moyen JF and Martin H. 2012. Forty years of TTG research. Lithos, 148(3): 312-334

    [39]

    Moyen JF and van Hunen J. 2012. Short-term episodicity of Archaean plate tectonics. Geology, 40(5): 451-454

    [40]

    Peng P, Guo JH, Windley BF, Liu F, Chu Z and Zhai MG. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Research, 222-223: 107-123

    [41]

    Polat A and Kerrich R. 2001. Geodynamic processes, continental growth, and mantle evolution recorded in Late Archean greenstone belts of the southern Superior Province, Canada. Precambrian Research, 112(1-2): 5-25

    [42]

    Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356

    [43]

    Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138

    [44]

    Sajona FG, Maury RC, Bellon H, Cotton J, Defant MJ, Pubellier M and Rangin C. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007-1010

    [45]

    Sajona FG, Bellon H, Maury RC, Pubellier M, Cotton J and Rangin C. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline lavas and Nb enriched basalts of Leyte and Mindanao (Philippines). Tectonophysics, 237(1-2): 47-72

    [46]

    Samsonov AV, Bogina MM, Bibikova EV, Petrova AY and Shchipansky AA. 2005. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: Implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos, 79(1-2): 83-106

    [47]

    Santosh M, Zhao DP and Kusky T. 2010. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on tomography. Journal of Geodynamics, 49(1): 39-53

    [48]

    Shirey SB and Hanson GN. 1984. Mantle-derived Archaean monzodiorites and trachyandesites. Nature, 310(5974): 222-224

    [49]

    Sizova E, Gerya T, Brown M and Perchuk LL. 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116(3-4): 209-229

    [50]

    Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett., 182(1): 115-125

    [51]

    Smithies RH and Champion DC. 2000. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. J. Petrol., 41(12): 1653-1671

    [52]

    Smithies RH, Champion DC and Cassidy KF. 2003. Formation of Earth's Early Archaean continental crust. Precambrian Research, 127(1-3): 89-101

    [53]

    Stern RA. 1989. Petrogenesis of the Archaean Sanukitoid Suite. New York: State University at Stony Brook, 1-275

    [54]

    Stern RA and Hanson GN. 1991. Archean high-Mg granodiorites: A derivative of light rare earth element enriched monzodiorite of mantle origin. J. Petrol., 32(1): 201-238

    [55]

    Van Hunen J and Moyen JF. 2012. Archean subduction: Fact or fiction? Annual Review of Earth and Planetary Sciences, 40: 195-219

    [56]

    Vavra G, Gebauer D, Schmid R and Copston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol., 122(4): 337-358

    [57]

    Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite- to- granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol., 134(4): 380-404

    [58]

    Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ and Yang EX. 2011. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geoscience Frontiers, 2(2): 137-146

    [59]

    Wang HC, Xiu QY and Yuan GB. 1999. Metamorphic evolution of Palaeoproterozoic Erdaowa Group in north Hohhot, Nei Mongol. Prog. Precamb. Res., 22(4): 39-49 (in Chinese with English abstract)

    [60]

    Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35

    [61]

    Wu CH and Zhong CT. 1998. The Paleoproterozoic SW-NE collision model for the central North China Craton: Implications for tectonic regime of the khondalite downward into lower crust in Jin-Meng high-grade region. Progress in Precambrian Research, 21(3): 28-50 (in Chinese with English abstract)

    [62]

    Zhai MG and Bian AG. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archean and its breakup during Late Palaeoproterozoic and Meso-proterozoic. Science in China (Series D), 30(Suppl.1): 129-137 (in Chinese)

    [63]

    Zhai MG and Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

    [64]

    Zhang Q, Wang Y, Qian Q, Zhai MG, Jin WJ, Wang YL and Jian P. 2004. Sanukite of Late Archean and earth evolution. Acta Petrologica Sinica, 20(6): 1355-1362 (in Chinese with English abstract)

    [65]

    Zhang Q, Qian Q, Zhai MG, Jin WJ, Wang Y, Jian P and Wang YL. 2005. Geochemistry, petrogenesis and geodynamic implications of sanukite. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract)

    [66]

    Zhang WJ, Li L and Geng MS. 2000. Petrology and dating of Archarean intrusive rocks from Guyang area, Inner Mogolia. Earth Science, 25: 221-226 (in Chinese with English abstract)

    [67]

    Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China craton and its bearing on tectonic setting. International Geology Review, 40(8): 706-721

    [68]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [69]

    Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)

    [70]

    Zhao GC, Li SZ, Sun M and Wilde SA. 2011. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: Records in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356

    [71]

    Zhao GC, Cawood PA, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76

    [72]

    Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240

    [73]

    Zhong CT, Deng JF, Wan YS, Mao DB and Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China craton: Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585-600 (in Chinese with English abstract)

    [74]

    Defant MJ, 许继峰, Kepezhinsksa P, 王强, 张旗, 肖龙. 2002. 埃达克岩: 关于其成因的一些不同观点. 岩石学报, 18(2): 129-142

    [75]

    邓晋福, 吴宗絮, 赵国春, 赵海玲, 罗照华. 1999. 华北地台前寒武花岗岩类、陆壳演化与克拉通形成. 岩石学报, 15(2): 190-198

    [76]

    董晓杰, 徐仲元, 刘正宏, 沙茜. 2012. 内蒙古中部西乌兰不浪地区太古宙高级变质岩锆石U-Pb年代学研究. 中国科学(地球科学), 42(7): 1001-1010

    [77]

    耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 26(7): 1945-1966

    [78]

    简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(Sanukite)-角闪花岗岩SHRIMP定年及其意义. 岩石学报, 21(1): 151-157

    [79]

    李江海, 钱祥麟, 黄雄南, 刘树文. 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1):1-10

    [80]

    马铭株, 徐仲元, 张连昌, 董春艳, 董晓杰, 刘首偈, 刘敦一, 万渝生. 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成. 岩石学报, 29(2): 501-516

    [81]

    马旭东, 范宏瑞, 郭敬辉. 2013. 阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示. 岩石学报, 29(7): 2329-2339

    [82]

    王惠初, 修群业, 袁桂邦. 1999. 内蒙古呼和浩特北部古元古代二道洼群的变质演化. 前寒武纪研究进展, 22(4): 39-49

    [83]

    吴昌华, 钟长汀. 1998. 华北陆台中段吕梁期的SW-NE向碰撞——晋蒙高级区孔兹岩系进入下地壳的构造机制. 前寒武纪研究进展, 21(3): 28-50

    [84]

    翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(S1): 129-137

    [85]

    张旗, 王焰, 钱青, 翟明国, 金惟浚, 王元龙, 简平. 2004. 晚太古代Sanukite(赞岐岩)与地球早期演化. 岩石学报, 20(6): 1355-1362

    [86]

    张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因、及其地球动力学意义. 岩石矿物学杂志, 24(2): 117-125

    [87]

    张维杰, 李龙, 耿明山. 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学, 25(3): 221-226

    [88]

    赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报,25(8): 1772-1792

    [89]

    钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585-600

  • 加载中
计量
  • 文章访问数:  7912
  • PDF下载数:  6870
  • 施引文献:  0
出版历程
收稿日期:  2014-02-26
修回日期:  2014-06-17
刊出日期:  2014-11-30

目录