俯冲带蛇纹岩的变质过程

申婷婷, 张立飞, 陈晶. 俯冲带蛇纹岩的变质过程[J]. 岩石学报, 2016, 32(4): 1206-1218.
引用本文: 申婷婷, 张立飞, 陈晶. 俯冲带蛇纹岩的变质过程[J]. 岩石学报, 2016, 32(4): 1206-1218.
SHEN TingTing, ZHANG LiFei, CHEN Jing. Metamorphism of subduction zone serpentinite[J]. Acta Petrologica Sinica, 2016, 32(4): 1206-1218.
Citation: SHEN TingTing, ZHANG LiFei, CHEN Jing. Metamorphism of subduction zone serpentinite[J]. Acta Petrologica Sinica, 2016, 32(4): 1206-1218.

俯冲带蛇纹岩的变质过程

  • 基金项目:

    本文受国家自然科学基金项目(41272069、41502039、41330210)、国家"973"项目(2015CB856105)和中国博士后基金项目(2015M570889)联合资助.

Metamorphism of subduction zone serpentinite

  • 俯冲带蛇纹岩是俯冲带流体的重要来源,特别是其深部脱水作用对地幔动力学影响深远,是研究俯冲带约80~200km深度范围的地球动力学的关键,因此研究蛇纹岩的变质作用过程及其相关特征矿物(组合)的温压稳定范围具有重要意义。蛇纹岩具有简单的矿物(组合):蛇纹石类、硅镁石类、磁铁矿、氢氧镁石、绿泥石、橄榄石、透辉石、角闪石、滑石等,并且这些矿物(组合)对温压变化不敏感从而很难用来判定蛇纹岩所经历的变质演化轨迹。近几十年来,研究者通过实验岩石学和野外地质观察,主要研究了蛇纹石类矿物和硅镁石类矿物的温压稳定范围,并且试图使用这些特征矿物(组合)来判定俯冲带蛇纹岩的峰期变质条件。本文总结了蛇纹岩中这些主要矿物的温压稳定范围和相关变质反应,并且以中国西南天山蛇纹岩为例,展示使用特征矿物(组合)和叶蛇纹石Al等值线判定蛇纹岩峰期温压条件在实际岩石中的应用。另外,早期对叶蛇纹石的研究表明:随着温压条件的变化,叶蛇纹石的晶体结构会发生相应的调整。表现为单位晶胞内硅氧四面体的个数(m值)发生变化:温度升高,m值变小;压力升高,m值变大,这个发现在高压实验和天然样品中得到了一定程度的验证。本文利用已知峰期温压范围的叶蛇纹石样品分别采用粉末制样法和离子减薄制样法,进行透射电镜测试(TEM)样品的m值,并通过统计的方法获得叶蛇纹石的m值的峰值。结果显示叶蛇纹石的m值的峰值在一定程度上可以用以指示温压条件。本文提出可以用矿物组合、叶蛇纹石Al等值线和叶蛇纹石m值峰值相结合的方法确定蛇纹岩的变质温压条件和P-T轨迹。
  • 加载中
  • [1]

    Aoki K, Fujino K and Akaogi M. 1976. Titanochondrodite and titanoclinohumite derived from the upper mantle in the Buell Park Kimberlite, Arizona, USA. Contributions to Mineralogy and Petrology, 56(3): 243-253

    [2]

    Aumento F and Loubat H. 1971. The Mid-atlantic ridge near 45°N. XVI. Serpentinized ultramafic intrusions. Canadian Journal of Earth Sciences, 8(6): 631-663

    [3]

    Balassone G, Franco E, Mattia CA, Petti C and Puliti R. 2002. Re-examination of fluosiderite, an unknown mineral from southern Italy: Equal to fluorine-rich chondrodite. European Journal of Mineralogy, 14(1): 151-155

    [4]

    Bose K and Navrotsky A. 1998. Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle. Journal of Geophysical Research, 103(B5): 9713-9719

    [5]

    Bromiley GD and Pawley AR. 2003. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability. American Mineralogist, 88(1): 99-108

    [6]

    Cannat M, Mével C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E and Reynolds J. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°~24°N). Geology, 23(1): 49-52

    [7]

    Cannat M, Fontaine F and Escartín J. 2010. Serpentinization at slow-spreading ridges: Extent and associated hydrogen and methane fluxesat slow spreading ridges. In: Rona PA, Devey CW, Dyment J and Murton J (eds.). Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. AGU Geophysical Monograph, Ridges. Washington, DC: American Geophysical Union, 188: 241-264

    [8]

    Capitani G and Mellini M. 2004. The modulated crystal structure of antigorite: The m=17 polysome. American Mineralogist, 89(1): 147-158

    [9]

    Carlson RL. 2001. The abundance of ultramafic rocks in Atlantic Ocean crust. Geophysical Journal International, 144(1): 37-48

    [10]

    Caruso LJ and Chernosky JR JV. 1979. The stability of lizardite. The Canadian Mineralogist, 17: 757-769

    [11]

    Christensen NI. 1972. The abundance of serpentinites in the oceanic crust. Journal of Geology, 80(6): 709-719

    [12]

    De Hoog JCM, Hattori K and Jung H. 2014. Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): Evidence for deep subduction of high-field strength and fluid-mobile elements. Contributions to Mineralogy and Petrology, 167(3): 990

    [13]

    Deschamps F, Godard M, Guillot S and Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96-127

    [14]

    Dymek RF, Boak JL and Brothers SC. 1988. Titanian chondrodite- and titanian clinohumite-bearing metadunite from the 3800Ma Isua supracrustal belt, West Greenland: Chemistry, petrology and origin. American Mineralogist, 73(5-6): 547-558

    [15]

    Ehlers K and Hoinkes G. 1987. Titanian chondrodite and clinohumite in marbles from the Ötztal crystalline basement. Mineralogy and Petrology, 36(1): 13-25

    [16]

    Engi M and Lindsley DH. 1980. Stability of titanian clinohumite: Experiments and thermodynamic analysis. Contributions to Mineralogy and Petrology, 72(4): 415-424

    [17]

    Evans BW, Johannes W, Oterdoom WH and Trommsdorff V. 1976. Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz. Mineral. Petrogr. Mitt., 56: 79-93

    [18]

    Evans BW and Trommsdorff V. 1978. Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40(3): 333-348

    [19]

    Evans BW. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. International Geology Review, 46(6): 479-506

    [20]

    Evans BW, Hattori K and Baronnet A. 2013. Serpentinite: What, why, where? Elements, 9(2): 99-106

    [21]

    Ferraris G, Mellini M and Merlino S. 1986. Polysomatism and the classification of minerals. Rend. Soc. Ltal. Mineral. Petrol., 41: 181-192

    [22]

    Franz G and Ackermand D. 1980. Phase relations and metamorphic history of a Clinohumite-chlorite-serpentine-marble from the Western Tauern Area (Austria). Contributions to Mineralogy and Petrology, 75(2): 97-110

    [23]

    Fujino K and Takéuchi Y. 1978. Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin. American Mineralogist, 63(5-6): 535-543

    [24]

    Fyfe WS and McBirney AR. 1975. Subduction and the structure of andesitic volcanic belts. American Journal of Science, 275-A: 285-297

    [25]

    Ghaderi N, Zhang H and Sun T. 2015. Relative stability and contrasting elastic properties of serpentine polymorphs from first-principles calculations. Journal of Geophysical Research: Solid Earth, 120(7): 4831-4842

    [26]

    Groppo C, Rinaudo C, Cairo S, Gastaldi D and Compagnoni R. 2006. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. European Journal of Mineralogy, 18(3): 319-329

    [27]

    Harvey J, Garrido CJ, Savov I, Agostini S, Padrón-Navarta JA, Marchesi C, López Sánchez-Vizcaíno V and Gómez-Pugnaire MT. 2014. 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 376: 20-30

    [28]

    Hattori KH and Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525-528

    [29]

    Hattori KH and Guillot S. 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry Geophysics Geosystems, 8(9), doi: 10.1029/2007GC001594

    [30]

    Hermann J, Fitz Gerald JD, Malaspina N, Berry AJ and Scambelluri M. 2007. OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contributions to Mineralogy and Petrology, 153(4): 417-428

    [31]

    Hilairet N, Daniel I and Reynard B. 2006. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophysical Research Letters, 33(2): L02302

    [32]

    Hilairet N, Reynard B, Wang YB, Daniel I, Merkel S, Nishiyama N and Petitgirard S. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318(5858): 1910-1913

    [33]

    Hyndman RD and Peacock SM. 2003. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3-4): 417-432

    [34]

    Isabel RDC, Barriga FJAS, Viti C, Mellini M and Wicks FJ. 2008. Antigorite in deformed serpentinites from the Mid-Atlantic Ridge. European Journal of Mineralogy, 20(4): 563-572

    [35]

    Johannes W. 1968. Experimental investigation of the reaction forsterite + H2O serpentine + brucite. Contributions to Mineralogy and Petrology, 19(4): 309-315

    [36]

    Kawakatsu H and Watada S. 2007. Seismic evidence for deep-water transportation in the mantle. Science, 316(5830): 1468-1471

    [37]

    Kearns LE, Kite LE, Leavens PB and Nelen JA. 1980. Fluorine distribution in the hydrous silicate minerals of the Franklin Marble, Orange County, New York. American Mineralogist, 65(5-6): 557-562

    [38]

    Kocman V and Rucklidge J. 1973. The crystal structure of a titaniferous clinohumite. American Mineralogist, 58: 1097-1098

    [39]

    Kunze G. 1961. Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für die weitere Serpentin-Forschung. Fortschr. Mineral., 39: 206-324

    [40]

    Li XP, Rahn M, Bucher K and Zhang LF. 2003. Lithological association of ultramafic rocks in ophiolites: Serpentinite, rodingite and ophicarbonate: An example from Zermatt-Sass of western Alps. Earth Science Frontiers, 10(4): 457-468 (in Chinese with English abstract)

    [41]

    Liou JG, Zhang RY, Ernst WG, Rumble D and Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. In: Hemley RJ (ed.). Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (Reviews in Mineralogy). Washington DC: Mineralogical Society of America, 37: 33-96

    [42]

    López Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O and Connolly JAD. 2005. Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contributions to Mineralogy and Petrology, 149(6): 627-646

    [43]

    López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Garrido CJ, Padrón-Navarta JA and Mellini M. 2009. Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): A petrological and TEM study. Lithos, 107(3-4): 216-226

    [44]

    Mazzoli S, Martín-Algarra A, Reddy SM, López Sánchez-Vizcaíno V, Fedele L and Noviello A. 2013. The evolution of the footwall to the Ronda subcontinental mantle peridotites: Insights from the Nieves Unit (western Betic Cordillera). Journal of the Geological Society, 170(3): 385-342

    [45]

    McGetchin TR, Silver LT and Chodos AA. 1970. Titanoclinohumite: A possible mineralogical site for water in the upper mantle. Journal of Geophysical Research, 75(2): 255-259

    [46]

    Mellini M and Zussman J. 1986. Carlosturanite (not "picrolite") from Taberg, Sweden. Mineralogy Magazine, 50(358): 675-679

    [47]

    Mellini M, Trommsdorff V and Compagnoni R. 1987. Antigorite polysomatism: Behaviour during progressive metamorphism. Contribution to Mineralogy and Petrology, 97(2): 147-155

    [48]

    Mével C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience, 335(10): 825-852

    [49]

    Mysen BO, Ulmer P, Konzett J and Schmidt MW. 1998. The upper mantle near convergent plate boundaries. In: Hemley RJ (ed.). Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior. Washington, DC: Mineralogical Society of America, 37: 97-138

    [50]

    Nestola F, Angel RJ, Zhao J, Garrido CJ, Sánchez-Vizcaíno VL, Capitani G and Mellini M. 2010. Antigorite equation of state and anomalous softening at 6GPa: An in situ single-crystal X-ray diffraction study. Contributions to Mineralogy and Petrology, 160(1): 33-43

    [51]

    O'Hanley DS, Chernosky JV and Wicks FJ. 1989. The stability of lizardite and chrysotile. The Canadian Mineralogist, 27(3): 483-493

    [52]

    O'Hanley DS and Wicks FJ. 1995. Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia. The Canadian Mineralogist, 33(4): 753-773

    [53]

    Okay AI. 1994. Sapphirine and Ti-clinohumite in ultra-high-pressure garnet-pyroxenite and eclogite from Dabie Shan, China. Contributions to Mineralogy and Petrology, 116(1): 145-155

    [54]

    Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ and Gómez-Pugnaire MT. 2011. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52(10): 2047-2078

    [55]

    Padrón-Navarta JA, Sánchez-Vizcaíno VL, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT and Marchesi C. 2013. Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178: 186-196

    [56]

    Peacock SA. 1990. Fluid processes in subduction zones. Science, 248(4953): 329-337

    [57]

    Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507(7491): 221-224

    [58]

    Perrillat JP, Daniel I, Koga KT, Reynard B, Cardon H and Crichton WA. 2005. Kinetics of antigorite dehydration: A real-time X-ray diffraction study. Earth and Planetary Science Letters, 236(3-4): 899-913

    [59]

    Rahn MK and Rahn K. 1998. Titanian clinohumite formation in the Zermatt-Saas ophiolites, Central Alps. Mineralogy and Petrology, 64(1-4): 1-13

    [60]

    Ranero CR, Phipps Morgan J, McIntosh K and Reichert C. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367-373

    [61]

    Rice JM. 1977. Contact metamorphism of impure dolomitic limestone in the Boulder Aureole, Montana. Contributions to Mineralogy and Petrology, 59(3): 237-259

    [62]

    Rinaudo C, Gastaldi D and Belluso E. 2003. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Canadian Mineralogist, 41(4): 883-890

    [63]

    Robinson K, Gibbs GV and Ribbe PH. 1973. The crystal structure of the humite minerals. IV. Clinohumite and titanoclinohumite. American Mineralogist, 58: 43-49

    [64]

    Scambelluri M, Hoogerduijn Strating EH, Piccardo GB, Vissers RLM and Rampone E. 1991. Alpine olivine- and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite (Voltri Massif, NW Italy). Journal of Metamorphic Geology, 9(1): 79-91

    [65]

    Scambelluri M, Müntener O, Hermann J, Piccardo GB and Trommmsdorff V. 1995. Subduction of water into the mantle: History of an Alpine peridotite. Geology, 23(5): 459-462

    [66]

    Scambelluri M and Rampone E. 1999. Mg-metasomatism of oceanic gabbros and its control on Ti-clinohumite formation during eclogitization. Contributions to Mineralogy and Petrology, 135(1): 1-17

    [67]

    Scambelluri M, Pettke T, Rampone E, Godard M and Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459-498

    [68]

    Scambelluri M, Pettke T and Cannaò E. 2015. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 429: 45-59

    [69]

    Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P and Auzende AL. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197-210

    [70]

    Shen TT, Hermann J, Zhang LF, Padrón-Navarta JA and Chen J. 2014. FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167(4): 992, doi: 10.1007/s00410-014-0092-8

    [71]

    Shen TT, Hermann J, Zhang LF, Lü Z, Padrón-Navarta JA, Xia B and Bader T. 2015. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan. Journal of Petrology, 56(7): 1425-1458

    [72]

    Smith D. 1977. Titanochondrodite and Titanoclinohumite derived from the upper mantle in the Buell Park kimberlite, Arizona, USA. Contributions to Mineralogy and Petrology, 61(2): 213-215

    [73]

    Strunz H. 1970. Mineralogische Tabellen, 5. Auflage. Leipzig, Germany: Akademische Verlagsgesellschaft Geest and Portig KG

    [74]

    Syracuse EM, van Keken PE and Abers GA. 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2): 73-90

    [75]

    Thompson JB. 1978. Biopyriboles and polysomatic series. American Mineralogist, 63(3-4): 239-249

    [76]

    Trommsdorff V and Evans BW. 1980. Titanian hydroxyl-clinohumite: Formation and breakdown in antigorite rocks (Malenco, Italy). Contributions to Mineralogy and Petrology, 72(3): 229-242

    [77]

    Trommsdorff V. 1983. Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, experiment und thermodynamischer datenbasis. Fortschr. Mineral., 61: 283-308

    [78]

    Trommsdorff V, Sánchez-Vizcaíno VL, Gómez-Pugnaire MT and Müntener O. 1998. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contributions to Mineralogy and Petrology, 132(2): 139-148

    [79]

    Trommsdorff V, Risold AC, Reusser E, Connolly J and Ulmer P. 2001. Titanian clinohumite: Ilmenite rod inclusions and phase relations, Central Alps. In: Abstr Vol UHPM Worksh 2001 Fluid/Slab/Mantle Interactions and Ultrahigh-P-Minerals. Tokyo: Waseda University

    [80]

    Ulmer P and Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858-861

    [81]

    Wei CJ and Powell R. 2003. Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contributions to Mineralogy and Petrology, 145(3): 301-315

    [82]

    Wei CJ and Powell R. 2005. Calculated phase relations in the system NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for high-pressure metapelites. Journal of Petrology, 47(2): 385-408

    [83]

    Wei CJ and Zhang YH. 2008. Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma. Chinese Science Bulletin, 53(23): 3603-3614

    [84]

    Wei CJ and Clarke GL. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. Journal of Metamorphic Geology, 29(9): 939-952

    [85]

    Weiss M. 1997. Clinohumites: A field and experimental study. Ph. D. Dissertation. Zurich: Swiss federal Institte of Technology (ETH), 1-154

    [86]

    Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187

    [87]

    Wunder B and Schreyer W. 1997. Antigorite: High-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41(1-3): 213-227

    [88]

    Wunder B. 1998. Equilibrium experiments in the system MgO-SiO2-H2O (MSH): Stability fields of clinohumite-OH [Mg9Si4O16(OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A [Mg7Si2O8(OH)6]. Contributions to Mineralogy and Petrology, 132(2): 111-120

    [89]

    Wunder B, Wirth R and Gottschalk M. 2001. Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13(3): 485-495

    [90]

    Xu ZQ, Chen J, Yang JS, Li XP and Chen FY. 2003. Discovery of Titanoclinohumite and Titanochondrodite exsolution in clinopyroxene included in Garnet peridotite and their significance. Acta Geologica Sinica, 77(4): 549-555 (in Chinese with English abstract)

    [91]

    Yamamoto K and Akimoto S. 1977. The system MgO-SiO2-H2O at high pressures and temperatures; stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10Å pahase. American Journal of Science, 277(3): 288-312

    [92]

    Yang JJ. 2003. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. Lithos, 70(3-4): 359-379

    [93]

    Zussman J, Brindley GW and Comer JJ. 1957. Electron diffraction studies of serpentine minerals. American Mineralogist, 42: 133-153

    [94]

    李旭平, Rahn M, Bucher K, 张立飞. 2003. 蛇绿岩套中超基性岩体的岩石组合: 蛇纹岩、异剥钙榴岩和蛇绿碳酸岩-以西阿尔卑斯Zermatt-Saas蛇绿岩为例. 地学前缘, 10(4): 457-468

    [95]

    魏春景, 张颖慧. 2008. 俯冲大洋岩石圈的相转变与俯冲带岩浆作用. 科学通报, 53(20): 2449-2459

    [96]

    许志琴, 陈晶, 杨经绥, 李旭平, 陈方远.2003. 苏鲁超高压变质带石榴石橄榄岩中含钛硅镁石出溶体的发现及其意义. 地质学报,77(4): 549-555

  • 加载中
计量
  • 文章访问数:  7702
  • PDF下载数:  6779
  • 施引文献:  0
出版历程
收稿日期:  2015-12-29
修回日期:  2016-02-01
刊出日期:  2016-04-30

目录