辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景

代堰锫, 张连昌, 王长乐, 刘利, 崔敏利, 朱明田, 相鹏. 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3594.
引用本文: 代堰锫, 张连昌, 王长乐, 刘利, 崔敏利, 朱明田, 相鹏. 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3594.
DAI YanPei, ZHANG LianChang, WANG ChangLe, LIU Li, CUI MinLi, ZHU MingTian, XIANG Peng. 2012. Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594.
Citation: DAI YanPei, ZHANG LianChang, WANG ChangLe, LIU Li, CUI MinLi, ZHU MingTian, XIANG Peng. 2012. Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594.

辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景

  • 基金项目:

    本文受国家重点基础研究发展计划973项目(2012CB416601)和中国科学院知识创新工程重要方向项目群(KZCX-2YW-Q04-07)联合资助.

详细信息
    作者简介:

    代堰锫,男,1986年生,博士生,矿床学专业,E-mail: diyeplas@foxmail.com

    通讯作者: 张连昌,男,博士,研究员,矿床地球化学专业,E-mail: lczhang@mail.iggcas.ac.cn
  • 中图分类号: P618.31

Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province

More Information
  • 辽宁鞍本地区位于华北克拉通东北缘,分布有诸多大型-特大型条带状铁矿床。本文对该区歪头山铁矿进行了岩石学、矿物学及年代学研究。歪头山铁建造以条带状铁矿石为主,兼含有少量的块状矿石,其顶底板围岩及矿体夹层主要为太古界鞍山群斜长角闪岩。元素地球化学分析表明,铁矿石富集重稀土[(La/Yb)PAAS=0.24~0.33],具La正异常(La/La*=1.43~1.61)、Eu正异常(Eu/Eu*=2.40~4.54) 及Y正异常(Y/Y*=1.10~1.30),Y/Ho值平均30.59,Sr/Ba值平均17.62,Ti/V值平均19.45,反映成矿物质可能来源于由海底火山活动带来的高温热液与海水的混合溶液。铁矿石无明显Ce负异常(Ce/Ce*=0.92~1.06),暗示BIF沉积时海水处于缺氧环境。除Fe2O3T与SiO2外,铁矿石中其它氧化物含量均非常低,且贫Th、U、Zr等具有陆源性质的元素,表明大陆碎屑物质对BIF贡献极少。斜长角闪岩稀土元素配分型式近于平坦[(La/Yb)N=0.80~1.10],无明显Ce异常(Ce/Ce*=0.95~0.99) 与Eu异常(Eu/Eu*=0.88~1.16);其大离子亲石元素富集,高场强元素无明显亏损。地球化学分析表明,斜长角闪岩原岩可能为产于弧后盆地的玄武质火山岩。锆石形态与微量元素分析显示,斜长角闪岩中的锆石均属岩浆成因。SIMS锆石U-Pb定年显示斜长角闪岩原岩形成于2533±11Ma,代表了歪头山BIF的成矿年龄;在玄武质岩浆喷发过程中,还捕获了一组年龄为2610±5Ma的锆石。电子探针分析显示磁铁矿成分纯净(FeOT=92.04%~93.05%),其标型组分特征暗示歪头山BIF属沉积变质型铁矿。综合分析认为,歪头山铁矿属Algoma型BIF,成矿与弧后盆地岩浆活动密切相关,指示了新太古代末华北克拉通普遍发育的一期BIF成矿事件。

  • 加载中
  • 图 1 

    辽宁鞍本地区条带状铁建造与太古宙地质体分布图(据沈其韩,1998;Wan et al., 2011修改)

    Figure 1. 

    The distribution of banded iron formations and Archean geological bodies in Anshan-Benxi area, Liaoning Province (modified after Shen, 1998; Wan et al., 2011)

    图 2 

    歪头山铁矿地质图(a)、地层柱状图(b) 和剖面图(c) (据冶金工业部鞍山冶金地质勘探公司,1983周世泰,1994修改)

    Figure 2. 

    Geological map (a), stratigraphic column (b) and stratigraphic section (c) of the Waitoushan iron mine (modified after Zhou, 1994)

    图 3 

    歪头山矿区铁矿石与斜长角闪岩野外及镜下特征

    Figure 3. 

    The field and microscopic characteristics of iron ores and amphibolites in the Waitoushan deposit

    图 4 

    铁矿石主量元素含量(a) 和主量元素图解(b, 底图据Lepp and Goldich, 1964; 沈其韩等, 2009)

    Figure 4. 

    Major element contents (a) and major element diagrams (b, the base map after Lepp and Goldich, 1964; Shen et al., 2009) of iron ores

    图 5 

    铁矿石稀土元素PAAS标准化配分图(a, 标准化值据McLennan, 1989) 与微量元素原始地幔标准化蛛网图(b, 标准化值据Sun and McDonough, 1989)

    Figure 5. 

    PAAS-normalized REE (a, normalization values after McLennan, 1989) and primitive-mantle-normalized trace element patterns (b, normalization values after Sun and McDonough, 1989) of iron ores

    图 6 

    斜长角闪岩主微量元素原岩恢复图解(底图分别据Tarney, 1976; Moine and Roche, 1968; 赵振华, 1997; Winchester and Floyd, 1977)

    Figure 6. 

    Major and trace element diagrams for protolith reconstruction of amphibolites (the base map after Tarney, 1976; Moine and Roche, 1968; Zhao, 1997; Winchester and Floyd, 1977 respectively)

    图 7 

    斜长角闪岩稀土元素球粒陨石标准化配分图(a, 标准化值据Taylor and McLennan, 1985) 与微量元素N-MORB标准化蛛网图(b, 标准化值据Sun and McDonough, 1989)

    Figure 7. 

    Chondrite-normalized REE (a, normalization values after Taylor and McLennan, 1985) and N-MORB-normalized trace element patterns (b, normalization values after Sun and McDonough, 1989) of amphibolites

    图 8 

    不同类型铁矿石中的磁铁矿主要成分平均含量蛛网图

    Figure 8. 

    The average content of main constituent in magnetite of different iron ores

    图 9 

    歪头山斜长角闪岩锆石阴极发光图像

    Figure 9. 

    Cathodoluminescence (CL) images of zircons selected from amphibolites in the Waitoushan deposit

    图 10 

    斜长角闪岩锆石207Pb/206Pb年龄明显分为两组(a)、不同年龄组锆石的Th/U比值不同(b) 和斜长角闪岩锆石U-Pb年龄(c)

    Figure 10. 

    Two groups of 207Pb/206Pb age of zircons selected from amphibolites (a), different Th/U ratios of zircons in different age groups (b) and zircon U-Pb age of amphibolites (c)

    图 11 

    斜长角闪岩锆石稀土元素球粒陨石标准化配分图(标准化值据Taylor and McLennan, 1985)

    Figure 11. 

    Chondrite-normalized REE pattern of zircons in amphibolites (normalization values after Taylor and McLennan, 1985)

    图 12 

    华北克拉通与BIF相关岩系形成时代与变质时代直方图

    Figure 12. 

    The histogram of formation and metamorphic ages of rocks associated with BIF in the North China craton

    图 13 

    斜长角闪岩构造环境判别图解(底图分别据Mullen, 1983; Pearce and Cann, 1973; Meschede, 1986; Cabanis and Lecolle, 1989)

    Figure 13. 

    Tectonic discrimination diagrams of amphibolites (the base map after Mullen (1983), Pearce and Cann (1973), Meschede (1986) and Cabanis and Lecolle (1989), respectively)

    图 14 

    Ce异常判别图解(底图据Bau and Dulski, 1996)

    Figure 14. 

    Ce/Ce*-Pr/Pr* discrimination diagram for Ce anomaly (the base map after Bau and Dulski, 1996)

  •  

    Abbott DH and Isley AE. 2001. Oceanic upwelling and mantle-plume activity: Paleomagnetic tests of ideas on the source of Fe in Early Precambrian iron formations. Geological Society of America, Special Paper, 352: 323-339

     

    Alibo DS and Nozaki Y. 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372

     

    Annersten H. 1968. A mineral chemical study of a metamorphosed iron formation in northern Sweden. Lithos, 1(4): 374-397

     

    Bau M and Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55

     

    Bau M and Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1-2): 77-90

     

    Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL and Beukes NJ. 2004. Dating the rise of atmospheric oxygen. Nature, 427(6970): 117-120

     

    Bekker A, Slack JF, Planavsky N, Krapez B, Hofmann A, Konhauser KO and Rouxel OJ. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes. Economic Geology, 105(3): 467-508

     

    Belousova E, Griffin W, O'Reilly Suzanne Y and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

     

    Bolhar R, Kamber BS, Moorbath S, Fedo CM and Whitehouse MJ. 2004. Characterisation of Early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222(1): 43-60

     

    Bolhar R, van Kranendonk MJ and Kamber BS. 2005. A trace element study of siderite-jasper banded iron formation in the 3.45Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater. Precambrian Research, 137(1-2): 93-114

     

    Byrne RH and Lee JH. 1993. Comparative yttrium and rare earth element chemistries in seawater. Marine Chemistry, 44(2-4): 121-130

     

    Cabanis B and Lecolle M. 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences Série II, 309: 2023-2029

     

    Cabral AR, Zeh A, Koglin N, Gomes AAS Jr, Viana DJ and Lehmann B. 2012. Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65Ga: Depositional U-Pb age of zircon from a metavolcanic layer. Precambrian Research, 204-205: 40-45

     

    Catuneanu O and Eriksson PG. 1999. The sequence stratigraphic concept and the Precambrian rock record: An example from the 2.7~2.1Ga Transvaal Supergroup, Kaapvaal craton. Precambrian Research, 97(3-4): 215-251

     

    Celik ÖF, Marzoli A, Marschik R, Chiaradia M, Neubauer F and Öz I ·. 2011. Early-Middle Jurassic intra-oceanic subduction in the I · zmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophysics, 509(1-2): 120-134

     

    Chen GY, Li MH, Wang XF, Sun DS, Sun CM, Wang ZF, Su YX and Lin JX. 1984. Special issue on genetic mineralogy of iron ore in Gongchangling. Journal of Mineralogy and Petrology, 4(2): 74-109 (in Chinese)

     

    Chen YQ. 1957. Problems on the genesis of the high-grade ore in the pre-Sinian (pre-Cambrian) banded iron ore deposits of the Anshan-type of Liaoning and Shantung provinces. Acta Geologica Sinica, 37(2): 153-189 (in Chinese with English abstract)

     

    Cloud P. 1973. Paleoecological significance of the banded iron-formation. Economic Geology, 68(7): 1135-1143

     

    Clout JMF and Simonson BM. 2005. Precambrian iron formations and iron formation-hosted iron ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology One Hundredth Anniversary Volume, 1905~2005. Littleton: Society of Economic Geologists, 643-679

     

    Condie KC. 1989. Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary: Identification and significance. Lithos, 23(1-2): 1-18

     

    Craddock PR and Dauphas N. 2011. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth and Planetary Science Letters, 303(1-2): 121-132

     

    Danielson A, Möller P and Dulski P. 1992. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chemical Geology, 97(1-2): 89-100

     

    Dobson DP and Brodholt JP. 2005. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434(7031): 371-374

     

    Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P and Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627-643

     

    Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319-335

     

    Eldridge CS, Compston W, Williams IS, Harris JW and Bristow JW. 1991. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353(6345): 649-653

     

    Elliott T, Plank T, Zindler A, White W and Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991-15019

     

    Falloon TJ, Malahoff A, Zonenshain LP and Bogdanov Y. 1992. Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S. Mineralogy and Petrology, 47(1): 1-35

     

    Fitton JG, James D and Leeman MP. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: Compositional variation in space and time. Journal of Geophysical Research, 96(B8): 13696-13711

     

    Fretzdorff S, Livermore RA, Devey CW, Leat PT and Stoffers P. 2002. Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean. Journal of Petrology, 43(8): 1435-1467

     

    Gill R. 2010. Igneous Rocks and Processes: A Practical Guide. Chichester: Wiley-Blackwell, 1-472

     

    Glikson A and Vickers J. 2007. Asteroid mega-impacts and Precambrian banded iron formations: 2.63Ga and 2.56Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia. Earth and Planetary Science Letters, 254(1-2): 214-226

     

    Goodwin AM. 1973. Archean iron-formations and tectonic basins of the Canadian Shield. Economic Geology, 68(7): 915-933

     

    Gribble RF, Stern RJ, Bloomer SH, Stuben D, O’Hearn T and Newman S. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta, 60(12): 2153-2166

     

    Gribble RF, Stern RJ, Newman S, Bloomer SH and O’Hearn T. 1998. Chemical and isotopic composition of lavas from the Northern Mariana Trough: Implications for magmagenesis in back-arc basins. Journal of Petrology, 39(1): 125-154

     

    Gromet LP, Dymek RF, Haskin LA and Korotev RL. 1984. The North American Shale Compesite: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482

     

    Gross GA. 1980. A classification of iron formations based on depositional environments. Canadian Mineralogist, 18(2): 215-222

     

    Gross GA and Mcleod CR. 1980. A preliminary assessment of the chemical composition of iron formation in Canada. Canadian Mineralogist, 18(2): 223-229

     

    Gross GA. 1983. Tectonic systems and the deposition of iron-formation. Precambrian Research, 20(2-4): 171-187

     

    Gross GA. 1996. Algoma-type previous termiron-formation.Next term. In: Lefebure D and Hy T (eds.). Selected British Columbia Mineral Deposits Profiles 2. Ottawa: British Columbia Ministry of Employment and Investment Open File, 25-28

     

    Guo HF. 1994. The tectonic evolutionary succession of the Archean crust in the Anshan area. Regional Geology of China, 1(1): 1-9 (in Chinese with English abstract)

     

    Hamade T, Konhauser KO, Raiswell R, Goldsmith S and Morris RC. 2003. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, 31(1): 35-38

     

    Heck PR, Huberty JM, Kita NT, Ushikubo T, Kozdon R and Valley JW. 2011. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75(20): 5879-5891

     

    Henderson P. 1984. Rare Earth Element Geochemistry, Developments in Geochemistry 2. Amsterdam: Elsevier, 1-510

     

    Holland HD. 1973. The oceans: A possible source of iron in iron-formations. Economic Geology, 68(7): 1169-1172

     

    Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62

     

    Huston DL and Logan GA. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth's early hydrosphere. Earth and Planetary Science Letters, 220(1-2): 41-55

     

    Isley AE. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. The Journal of Geology, 103(2): 169-185

     

    Isley AE and Abbott DH. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research, 104(B7): 15461-15477

     

    Jacobsen SB and Pimentel-Klose MR. 1988. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and Fe in Archean oceans. Earth and Planetary Science Letters, 87(1-2): 29-44

     

    Jahn BM, Wu FY and Lo CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146

     

    James HL. 1954. Sedimentary facies of iron-formation. Economic Geology, 49(3): 235-293

     

    James HL. 1983. Distribution of banded iron-formation in space and time. Developments in Precambrian Geology, 6: 471-490

     

    Jiang SY, Ding TP, Wan DF and Li YH. 1992. The character of Si isotopes of Archaean BIF form Gongchangling, Liaoning Province. Science in China (Series B), (6): 626-631 (in Chinese)

     

    Jiang YN and Xiu QY. 1989. Study of the ferri-winchite in iron ore of Precambrian Anshan Group at Waitoushan mine, Benxi, Liaoning Province. Contributions to Geology and Mineral Resources Research, 4(4): 47-54 (in Chinese with English abstract)

     

    Kato Y, Ohta I, Tsunematsu T, Watanabe Y, Isozaki Y, Maruyama S and Imai N. 1998. Rare earth element variations in Mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics. Geochimica et Cosmochimica Acta, 62(21-22): 3475-3497

     

    Khan RMK, Das Sharma S, Patil DJ and Naqvi SM. 1996. Trace, rare-earth element, and oxygen isotopic systematics for the genesis of banded iron-formations: Evidence from Kushtagi schist belt, Archaean Dharwar Craton, India. Geochimica et Cosmochimica Acta, 60(17): 3285-3294

     

    Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473-1499

     

    Konhauser KO and Ferris FG. 1996. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology, 24(4): 323-326

     

    Konhauser KO, Kappler A and Roden EE. 2011. Iron in microbial metabolisms. Elements, 7(2): 89-93

     

    Lascelles DF. 2006. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia. Economic Geology, 101(7): 1359-1376

     

    Lepp H and Goldich S. 1964. Origin of Precambrian iron formations. Economic Geology, 59(6): 1025-1060

     

    Li DL. 2003. Primary discussion on the structural geology and ore-controling models in Waitoushan Fe deposit, Liaoning Province. Contributions to Geology and Mineral Resources Research, 18(2): 88-94 (in Chinese with English abstract)

     

    Li SJ and Quan GX. 2010. Stratigraphic division and correlation of iron ore-bearing metamorphic rocks in Anshan-Benxi area. Contributions to Geology and Mineral Resources Research, 25(2): 107-111 (in Chinese with English abstract)

     

    Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry Geophysics Geosystem, 10: Q04010, doi:10.1029/2009GC002400

     

    Li YH, Zhang ZJ, Wu JS and Shang LP. 2011. Metamorphic chronology of the BIF in Malanzhuang of eastern Hebei Province and its geological implications. Mineral Deposits, 30(4): 645-653 (in Chinese with English abstract)

     

    Li YL, Konhauser KO, Cole DR and Phelps TJ. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39(8): 707-710

     

    Li ZH, Zhu XK and Tang SH. 2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4): 285-290(in Chinese with English abstract)

     

    Lin SZ. 1982. A contribution to the chemistry, origin and evolution of magnetite. Acta Mineralogica Sinica, (3): 166-174 (in Chinese with English abstract)

     

    Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342

     

    Liu DY, Wilde SA, Wan YS, Wu JS, Zhou HY, Dong CY and Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. American Journal of Science, 308(3): 200-231

     

    Ludwig KR. 2001. Users Manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication. No. 1a: 56

     

    McLennan SM. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin BR and McKay GA (eds.). Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy and Geochemistry, 21, 169-200

     

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

     

    Moine B and Roche H. 1968. Nouvelle approche du problème de l'origine des amphibolites a partir de leur composition chimique. Comptes Rendus de I’Académie des Sciences Paris, 267: 2084-2087

     

    Mullen ED. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

     

    Noffke N, Eriksson KA, Hazen RM and Simpson EL. 2006. A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits (3.2Ga Moodies Group, South Africa). Geology, 34(9): 253-256

     

    Nozaki Y, Zhang YS and Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329-340

     

    Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300

     

    Peng P and Zhai MG. 2002. Two major Precambrian geological events of North China Block (NCB): Characteristics and property. Advance in Earth Sciences, 17(6): 818-825 (in Chinese with English abstract)

     

    Pirajno F. 2004. Hotspots and mantle plumes: Global intraplate tectonics, magmatism and ore deposits. Mineralogy and Petrology, 82(3-4): 183-216

     

    Qiao GS, Zhai MG and Yan YH. 1990. Geochronological study of Archaean rocks in Anshan, Liaoning Province. Scientia Geologica Sinica, (2): 158-164 (in Chinese with English abstract)

     

    Rao TG and Naqvi SM. 1995. Geochemistry, depositional environment and tectonic setting of the BIF’s of the Late Archaean Chitradurga Schist Belt, India. Chemical Geology, 121(1-4): 217-243

     

    Rasmussen B, Fletcher IR, Bekker A, Muhling JR, Gregory CJ and Thorne AM. 2012. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature, 484(7395): 498-501

     

    Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138

     

    Rumble D. 1973. Fe-Ti Oxide minerals from regionally metamorphosed quartzites of western new hampshire. Contributions to Mineralogy and Petrology, 42(3): 181-195

     

    Shen BF, Luo H, Li SB, Li JJ, Peng XL, Hu XD, Mao DB and Liang RX. 1994. Geology and Metallization of Archean Greenstone Belts in North China Platform. Beijing: Geological Publishing House, 119-129 (in Chinese with English abstract)

     

    Shen BF, Zhai AM, Chen WM, Yang CL, Hu XD, Cao XL and Gong XH. 2006. The Precambrian Mineralization of China. Beijing: Geological Publishing House, 55-63 (in Chinese).

     

    Shen QH. 1998. Geological Characteristics and Settings of the Pre-Cambrain Banded Magnetite Quartzite in North China Platform. In: Cheng YQ (ed.). Collected Papers on Pre-Cambrain Geology Study of north China Platform. Beijing: Geological Publishing House, 1-30 (in Chinese)

     

    Shen QH, Song B, Xu HH, Geng YS and Shen K. 2004. Emplacement and metamorphism ages of the Caiyu and Dashan igneous bodies, Yishui County, Shandong Province: Zircon SHRIMP chronology. Geological Review, 50(3): 275-284 (in Chinese with English abstract)

     

    Shen QH, Song HX and Zhao ZR. 2009. Characteristics of rare earth elements and trace elements in Hanwang Neoarchaean banded iron formations, Shandong Province. Acta Geoscientica Sinica, 30(6): 693-699 (in Chinese with English abstract)

     

    Shen QH, Song HX, Yang CH and Wan YS. 2011. Petrochemical characteristics and geological significations of banded iron formations in the Wutai Mountain of Shanxi and Qian'an of eastern Hebei. Acta Petrologica et Mineralogica, 30(2): 161-171 (in Chinese with English abstract)

     

    Slack JF and Cannon WF. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology, 37(11): 1011-1014

     

    Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94

     

    Steinhoefel G, Horn I and Blanckenburg F. 2009. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta, 73(18): 5343-5360

     

    Sun HY, Dong CY, Xie HQ, Wang W, Ma MZ, Liu DY, Nutman A and Wan YS. 2010. The formation age of the Neoarchean Zhuzhangzi and Dantazi groups in the Qinglong area, eastern Hebei Province: Evidence from SHRIMP U-Pb zircon dating. Geological Review, 56(6): 888-898 (in Chinese with English abstract)

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Tarney J. 1976. Geochemistry of Archean high grade gneisses with implications as to origin and evolution of the Precambrian crust. In: Windley BF (ed.). The Early History of Earth. London: Wiley, 405-417

     

    Taylor B and Martinez F. 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3-4): 481-497

     

    Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1-328

     

    Trendall AF. 2002. The significance of iron-formation in the Precambrian stratigraphic record. In: Altermann W, Corcoran PL (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. International Association of Sedimentologists Special Publication, New York: John Wiley & Sons, Inc., 33-66

     

    Veizer J. 1983. Geologic evolution of the Archean-Early Proterozoic Earth. In: Schopf JW (ed.). Earth's Earliest Biosphere. Princeton: Princeton University Press, 240-259

     

    Wan YS. 1993. The Formation and Evolvement of Ferreous Rock Series of Gongchangling, Liaoning Province. Beijing: Beijing Science and Technology Press, 1-99 (in Chinese with English abstract)

     

    Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ and Geng YS. 2005a. Geochemical and Nd isotopic compositions of 3.8Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Science, 24(6): 563-575

     

    Wan YS, Song B, Yang C and Liu DY. 2005b. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica, 79(1): 78-87 (in Chinese with English abstract)

     

    Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX and Gao LZ. 2009. Early Precambrian crustal evolution in the Dengfeng area, Henan Province (eastern China): Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract)

     

    Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY and Ma MZ. 2012. Multiple 3.8~3.1Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54: 18-30

     

    Wang CQ, Cui WY, Krner A and Nemchin AA. 1999. The zircon isotopic age of magnetite quartzite in the Archean Jianping metamorphic complex, western Liaoning Province. Chinese Science Bulletin, 44(15): 1666-1670 (in Chinese)

     

    Wang SL and Zhang RH. 1995. U-Pb isotope age of individual zircon from biotite leptynite in the Qidashan iron deposit and its significance. Mineral Deposits, 14(3): 216-219 (in Chinese with English abstract)

     

    Wang W, Wang SJ, Liu DY, Li PY, Dong CY, Xie HQ, Ma MZ and Wan YS. 2010. Formation age of the Neoarchaean Jining Group (banded iron formation) in the western Shandong Province: Constraints from SHRIMP zircon U-Pb dating. Acta Petrologica Sinica, 26(4): 1175-1181 (in Chinese with English abstract)

     

    Wilson JF, Nesbitt RW and Fanning CM. 1995. Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: A revision of greenstone stratigraphy and a model for crustal growth. Geological Society, London, Special Publications, 95(1): 109-126

     

    Wilson M. 1989. Igneous Petrogenesis: A global Tectonic Approach. London: Unwin Hyman: 1-466

     

    Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

     

    Winter JD. 2001. An Introduction to Igneous and Metamorphic Petrology. New Jersey: Prince Hall, 1-697

     

    Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362

     

    Wu YB, Chen DG, Xia QK, Tu XL and Cheng H. 2002. In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite: Trace element characteristics of eclogite-facies metamorphic zircon. Chinese Science Bulletin, 47(16): 1398-1401

     

    Xu GF and Shao JL. 1979. The typomorphic characteristics of magnetite and its significance. Geology and Prospecting, (3): 30-37 (in Chinese with English abstract)

     

    Xu ZY. 1991. The origin and evolution of the banded structure in Archaean iron orebody, Anshan area. Journal of Changchun University of Earth Science, 21(4): 389-396 (in Chinese with English abstract)

     

    Yang FJ. 1980. The initial research of sulfur isotope geology of ferrosilicon formation in Precambrian in Anshan-Benxi area. The Academic Journal of Tianjin Geological Survey, (1): 110-122 (in Chinese with English abstract)

     

    Yang ZS, Yu BX and Gao DH. 1983. Researches of tectonic deformation of the metamorphic sedimentary iron-deposits in Waitoushan area, Liaoning Province. Journal of Changchun University of Earth Science, (2): 11-23 (in Chinese with English abstract)

     

    Yao PH. 1993. Iron Ore Deposits of China. Beijing: Metallurgical Industry Press, 290-293 (in Chinese)

     

    Zhai MG and Windley BF. 1990. The Archaean and Early Proterozoic banded iron formations of North China: Their characteristics geotectonic relations, chemistry and implications for crustal growth. Precambrian Research, 48(3): 267-286

     

    Zhai MG, Windley BF and Sills JD. 1990. Archaean gneisses amphibolites, and banded iron-formation from the Anshan area of Liaoning Province, NE China: Their geochemistry, metamorphism and petrogenesis. Precambrian Research, 46(3): 195-216

     

    Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

     

    Zhang BH, Cai YT, Zhang WB, Cui WZ, Zheng JQ and Liu RQ. 1986. Structural deformation of the early pre-Cambrian rock groups in the Anshan area, Liaoning Province. Journal of Changchun University of Earth Science, (2): 47-56 (in Chinese with English abstract)

     

    Zhang LC, Zhai MG, Zhang XJ, Xiang P, Dai YP, Wang CL and Pirajno F. 2011b. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research, doi:10.1016/j.precamres.2011.09.007

     

    Zhang RH and Wang SL. 1994. A new viewpoint about iron ore deposit: Controlled by ductile shear zones at Waitoushan. Contributions to Geology and Mineral Resouces Research, 9(4): 57-62 (in Chinese with English abstract)

     

    Zhang XJ, Zhang LC, Xiang P, Wan B and Pirajno F. 2011a. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137-148

     

    Zhang YS, Amakawa H and Nozaki Y. 1994. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophysical Research Letters, 21(24): 2677-2680

     

    Zhao ZH. 1997. Geochemistry of Trace Elements. Beijing: Science Press, 1-238 (in Chinese)

     

    Zhao ZH. 2010. Banded iron formation and related great oxidation event. Earth Science Frontiers, 17(2): 1-12 (in Chinese with English abstract)

     

    Zheng JQ, Zhang BH, Cai YT, Cui WZ, Zhang WB and Liu RQ. 1986. Tectonic characteristics of the Archean Anshan Group and their effects on iron ore deposits in area of Beitai to Waitoushan, Benxi, Liaoning Province. Contributions to Geology and Mineral Resources Research, 1(1): 20-29 (in Chinese with English abstract)

     

    Zhou ST. 1994. Geology of the BIF in Anshan-Benxi Area. Beijing: Geological Publishing House, 1-277 (in Chinese)

  • 加载中

(14)

计量
  • 文章访问数:  10976
  • PDF下载数:  6576
  • 施引文献:  0
出版历程
收稿日期:  2012-07-15
修回日期:  2012-09-18
刊出日期:  2012-11-01

目录