大兴安岭中生代花岗岩类的地球化学

林强 葛文春 吴福元 孙德有 曹林. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 2004, 20(3): 403-412.
引用本文: 林强 葛文春 吴福元 孙德有 曹林. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 2004, 20(3): 403-412.
IIN Qiang,GE WenChun,WU FuYuan,SUN DeYou,CA0 Lin College of Earth Sciences,Jilin University,Changchun 130061,China. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 2004, 20(3): 403-412.
Citation: IIN Qiang,GE WenChun,WU FuYuan,SUN DeYou,CA0 Lin College of Earth Sciences,Jilin University,Changchun 130061,China. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 2004, 20(3): 403-412.

大兴安岭中生代花岗岩类的地球化学

  • 基金项目:

    国家自然科学基金(49972027)

Geochemistry of Mesozoic granites in Da Hinggan Ling ranges

  • 大兴安岭中生代花岗岩根据微量元素地球化学特征划分为高锶花岗岩类和低锶花岗岩类,前者富集Ba、Sr、Ti,而后者强烈亏损这些元素而富集大离子亲石元素和高场强元素。高锶花岗岩类主要由石英闪长岩、英云闪长岩和花岗闪长岩组成,属于Ⅰ型花岗岩;低锶花岗岩类由二长花岗岩、正长花岗岩、碱长花岗岩和碱性花岗岩组成,二长花岗岩一正长花岗岩一碱长花岗岩也属于Ⅰ型花岗岩,碱性花岗岩为A1型花岗岩。这两类花岗岩均显示εNd(t)正值^87Sr/^86Sr低值以及较低的Nd模式年龄。高锶与低锶花岗岩类地球化学差异性表明,高锶花岗岩起源于相对亏损的幔源岩浆的分异作用,而低锶花岗岩类的源区与显生宙地壳增生时期起源于地幔的年轻地壳物质有关,即起源于富集型幔源基性岩石的部分熔融。大兴安岭中生代花岗岩与流纹岩之间地球化学相似性以及与玄武岩类的相关性表明,它们是统一的构造一岩浆体系的产物,共同制约于古亚洲洋闭合后的大陆伸展的构造环境和闭合期间壳幔相互作用形成的地幔源区。
  • 加载中
  • [1]

    [1]Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos, 45:45 -70

    [2]

    [2]Chappell B W, Bryant C J, Wyborn D, White A J R and Williams I S.1998. High and low-temperature Ⅰ-type granites. Resource Geology,48: 225 - 236

    [3]

    [3]Chappell B W, White A J R, Williams I S, Wyborn D and Wyborn L A I. 2000. Lachlan Fold Belt granites revisited: high- and lowtemperature granites and their implication. Australian Journal of Earth Sciences, 47: 123 - 138

    [4]

    [4]Collins W J, Beams S D, White A J R, 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia.Contrib. Mineral. Petrol., 80:189-200

    [5]

    [5]Eby G N. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20:641-644

    [6]

    [6]Frost C D, Frost B R, Chamerlain K R and Edwards B R. 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA:a reduced, rapakivi-type anorogenic granite, Journal of Petrology,40:1771 - 1802

    [7]

    [7]Ge WC, Lin Q, Sun DY, et al. 2000. Geochemical research into origins of two types of Mesozoic rhyolites in Da Hinggan Ling. Earth Science - Journal of China University of Geoscience, 25 (2): 172 - 178(in Chinese with English abstract)

    [8]

    [8]Ge WC, Lin Q, Sun DY, Wu FY. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantlecrust interaction. Acta Petrologica Sinica, 15 ( 3 ): 397 - 407 ( in Chinese with English abstract)

    [9]

    [9]Goodenough K M, Upton B G J, Ellam R M. 2000. Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich "A-type" intrusion. Lithos, 51:205~221

    [10]

    [10]Guo Feng, Fan Wei-ming, Wang Yue-jun, et al. 2001. Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China. Acta Petrologica Sinica, 17 ( 1 ): 161 - 168 ( in Chinese with English abstract)

    [11]

    [11]Heilongjiang Bureau of Geology and Mineral Resources. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 734 (in Chinese with English abstract)

    [12]

    [12]Hong D W, Wang S G, Xie X L, Zhang J S. 2000. Genesis of positive ε( Nd ,t) granitoids in the Da Hinggan Mts. - Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7:441 -455( in Chinese with English abstract)

    [13]

    [13]Jung S, Mezger K, Hoernes S. 1998. Petrology and geochemistry of synto post-collisional metaluminous A-type granites: a major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 45: 147 - 175

    [14]

    [14]King P L, Chappell B W, Allen C M and White A J R. 2001. Are Atype granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48: 501 -514

    [15]

    [15]King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38:371 -391

    [16]

    [16]Li Z T, Zhao C J. 1992. Preliminary study on the Triassic A-type granites in NE China. In: Shenyang Institute of Geology and Mineral Resources ( ed. ). Memoir of Institute of Geology and Mineral Resources, No. 1, Beijing: Seismological Press, 96 - 108 (in Chinese)

    [17]

    [17]Lin Qiang, Ge Wenchun, Sun Deyou, et al., 2000. Genesis relationships between two types of Mesozoic rhyolite and basalts in Da Hinggan Ling Range. Journal of Changchun University of Science and Technology, 30:322 -328 (in Chinese with English abstract)

    [18]

    [18]Liu Y, Liu H C, Li X H. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geoch imica, 25(6): 552 -558 (in Chinese with English abstract)

    [19]

    [19]Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956 - 983

    [20]

    [20]Qin Kezhang, Ryoji Tanaka, Li Weishi et al. 1998. The discovery of Indo-Sinian granites in Manzhouli area: evidence from Rb-Sr isochrons. Acta Petrologica et Mineralogica, 17:235 -240 (in Chinese with English abstract)

    [21]

    [21]Roberts M P, Clemens J D. 1993. Origin of high-potassium, calcalkaline, Ⅰ-ype granitoids. Geology, 21 (9): 825-828

    [22]

    [22]Sun S S, and McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J ( eds. ). Magmatism in the Ocean Basins. Geol. Soc. London Spe. Pub., 42:313-345

    [23]

    [23]Walsh J M N, Beckinsale R D, Shelhorn R R and Thorpe R S. 1979. Geochemistry and petrogenesis of Tertiary granitic rocks from the island of Mull, NW Scotland. Contribution to Mineralogy and Petrology, 71: 99 - 116

    [24]

    [24]Wang Yixian and Zhao Zhenhua. 1997. Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr superlarge deposit. Geochimica, 26( 1 ): 24-35 (in Chinese with English abstract)

    [25]

    [25]Wei C S, Zheng Y F, Zhao Z F, Valley J W. 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 30:375 -378

    [26]

    [26]Wei CS, Zheng YF, Zhao ZF. 2001. Nd-Sr-O isotopic geochemistry constraints on the age and origin of the A-type granites in eastern China. Acta Petrologica Sinica, 17( 1 ) :95 - 111 ( in Chinese with English abstract)

    [27]

    [27]Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis.Contrib. Mineral. Petrol., 95:407-419

    [28]

    [28]Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic continental crustal growth: Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328, 89 - 113

    [29]

    [29]Wu F Y, Sun D Y, Li H M, et al. 2002. A-type granites in northeastern China: age and geochemical contraints on their petrogenesis.Chemical Geology, 187, 143-173

    [30]

    [30]Wu Fuyuan, Sun Deyou, Lin Qiang. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China. Acta Petrnlogica Sinica, 15 (2): 181 - 189 ( in Chinese with English abstract)

    [31]

    [31]Wyborn D, Turner B S and Chappell B W. 1987. The Boggy Plain Supersuite: a distinctive belt of Ⅰ-type igneous rocks of potential economic significance in Lachlan Fold Belt. Australian Journal of Earth Sciences, 34: 21 -43

    [32]

    [32]Yue Yongjun. 1994. The comfirmation and basic characteristics of the Indosinian granites in the Chaoyanggou-Xinlinzhen area, southern Da Xing\' an Mountains. Bulletin of the Chinese Academy of Geological Sciences, 29: 67 - 78 ( in Chinese with English abstract)

    [33]

    [33]Zhao Chunjing, Li Zhitong. 1983. Paleozoic tectono-granitic provinces in northern Northeast China and their geologic and tectonic significance. Contributions for the Project of Plate Tectonics in Northern China. Shenyang: Shenyang Institute of Geology and Mineral Resources, 280 -292 (in Chinese with English abstract)

    [34]

    [34]葛文春,林强,孙德有等.2000.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学,25(2):172-178

    [35]

    [35]葛文春,林强,孙德有,吴福元.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15(3):397-407

    [36]

    [36]郭锋,范蔚茗,王岳军等.2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1):161-168

    [37]

    [37]黑龙江地矿局.1993.黑龙江区域地质志.北京:地质出版社,734

    [38]

    [38]洪大卫,王式光,谢锡林,张季生.2000.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长.地学前缘,7:441-455

    [39]

    [39]李培忠,于津生.1994.碾子山晶洞碱性花岗岩同位素地球化学.见:陈好寿主编,同位素地球化学研究.杭州:浙江大学出版社,269-286

    [40]

    [40]李之彤,赵春荆.1992.东北北部三迭纪A型花岗岩的初步研究.中国地质科学院沈阳地质矿产研究所集刊(第一号).沈阳地质矿产研究所编.北京:地震出版社,96-108

    [41]

    [41]林强,葛文春,孙德有,吴福元,元钟宽,李文远,尹成孝,陈明植,闵庚德,权致纯.2000.大兴安岭中生代两类流纹岩与玄武岩的成因联系.长春科技大学学报,30:322-328

    [42]

    [42]刘颖,刘海臣,李献华.1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,25(6):552-558

    [43]

    [43]秦克章,田中亮吏,李伟实,石原舜三.1998.满洲里地区印支期花岗岩Rb-Sr等时线年代学证据.岩石矿物学杂志,17:235-240

    [44]

    [44]王一先,赵振华.1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学,26(1):24-35

    [45]

    [45]魏春生,郑永飞,赵子福.2001.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约.岩石学报,17(1):95-111

    [46]

    [46]吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15(2):181-189

    [47]

    [47]岳永君.1994.大兴安岭南段朝阳沟-新林镇一带印支期花岗岩的确认及其基本地质特征.中国地质科学院院报,29:67-78

    [48]

    [48]赵春荆,李之彤.1983.东北北部地区古生代构造花岗岩区划及其地质构造意义.见:沈阳地质矿产研究所编.中国北方板块构造文集,280-292

  • 加载中
计量
  • 文章访问数:  8808
  • PDF下载数:  7017
  • 施引文献:  0
出版历程
修回日期:  2002-10-25
刊出日期:  2004-05-31

目录