龙门山南段青衣江阶地沉积物的化学风化特征及其意义

姜大伟, 张世民, 丁 锐, 李 伟, 刘汉永, 郭 萌. 龙门山南段青衣江阶地沉积物的化学风化特征及其意义[J]. 地质科学, 2016, 51(3): 763-778. doi: 10.12017/dzkx.2016.028
引用本文: 姜大伟, 张世民, 丁 锐, 李 伟, 刘汉永, 郭 萌. 龙门山南段青衣江阶地沉积物的化学风化特征及其意义[J]. 地质科学, 2016, 51(3): 763-778. doi: 10.12017/dzkx.2016.028
Jiang Dawei, Zhang Shimin, Ding Rui, Li Wei, Liu Hanyong, Guo Meng. The chemical weathering and its significance of Qingyi River terraces, south range of Longmen Shan[J]. Chinese Journal of Geology, 2016, 51(3): 763-778. doi: 10.12017/dzkx.2016.028
Citation: Jiang Dawei, Zhang Shimin, Ding Rui, Li Wei, Liu Hanyong, Guo Meng. The chemical weathering and its significance of Qingyi River terraces, south range of Longmen Shan[J]. Chinese Journal of Geology, 2016, 51(3): 763-778. doi: 10.12017/dzkx.2016.028

龙门山南段青衣江阶地沉积物的化学风化特征及其意义

详细信息
    作者简介:

    姜大伟,男,1992年2月生,博士研究生,构造地质学专业。Email:jiangdawei12@163.com

  • 中图分类号: P594, P595

The chemical weathering and its significance of Qingyi River terraces, south range of Longmen Shan

  • 本文通过对龙门山南段青衣江阶地的研究, 尝试以常量元素所体现的风化特征, 来解决阶地对比的问题, 并取得了一定的进展。通过主量元素的分析, 发现CIA指标、 A—CN—K三角模型等, 在区分不同年龄的阶地有很好的效果, 而且沉积物砾石之间的基质颜色也一定程度地反映了新老关系。结合流域内更古老洪积扇的研究, 发现河流阶地在距今200ka内化学风化速度较稳定, 但更老的地貌面风化呈现非线性。另外, 在本文研究的600ka时间尺度内, 阶地风化速度与全球气候变化相关, 体现为冰期风化速度慢, 间冰期风化速度快, 并具一定的滞后效应。
  • 加载中
  • [1]

    鲍志诚,彭渤,徐婧喆等. 2012. 湘江入湖河段沉积物主元素组成对重金属污染的指示. 地球化学,41(6): 545—558.

    [2]

    Bao Zhicheng, Peng Bo, Xu Jingzhe et al. 2012. Geochemical study on the relation of chemical compositions to heavy metal contamination of sediments from the lowermost Xiangjiang River, Hunan Province, China. Geological Chemistry,41(6): 545—558.

    [3]

    陈骏,季峻峰,仇纲等. 1997. 陕西洛川黄土化学风化程度的地球化学研究. 中国科学(D辑),27(6): 531—536.

    [4]

    Chen Jun, Ji Junfeng, Qiu Gang et al. 1998. Geochemical studies on the intensity of chemical weathering in Luochuan loesspaleosol sequence, China. Science in China(Series D),41(3): 235—241.

    [5]

    陈骏,安芷生,刘连文等. 2001. 最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化. 中国科学(D辑),31(2): 136—145.

    [6]

    Cheng Jun, An Zhisheng, Liu Lianwen et al. 2001. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5Ma and chemical weathering in the Asian inland. Science in China(Series D),44(5): 403—413.

    [7]

    陈立春,冉勇康,王虎等. 2013. 芦山地震与龙门山断裂带南段活动性. 科学通报, 58(20): 1925—1932.

    [8]

    Chen Lichun, Ran Yongkang, Wang Hu et al. 2013. The Lushan MS7.0 earthquake and activity of the southern segment of the Longmenshan fault zone. Chinese Science Bulletin,58(28): 1925—1932.

    [9]

    陈云,童国榜,曹家栋等. 1999. 渭河宝鸡段河谷地貌的构造气候响应. 地质力学学报,5(4): 51—58.

    [10]

    Chen Yun, Dong Guobang, Cao Jiadong et al. 1999. Tectonic climate response in the geomorphology of the Weihe River valley around Baoji, Shaanxi Province. Journal of Geomechanics, 5(4): 51—58.

    [11]

    崔志强,刘登忠,孟庆敏. 2009. 川西凹陷地区更新统砾石层沉积成因探讨. 中国地质,〖STHZ〗36〖STBZ〗(5): 1065—1078.

    [12]

    Cui Zhiqiang, Liu Dengzhong and Meng Qingmin. 2009. The origin of the Pleistocene gravel in western Sichuan depression. Geology in China,36(5): 1065—1078.

    [13]

    邓丽. 2009. 四川名山地区第四纪沉积物特征及沉积环境探讨(硕士学位论文). 成都:成都理工大学. 1—68.

    [14]

    Deng Li. 2009. Research of the Characteristics of Quaternary Sediments and Sedimentary Environments in Ming-Shan Area, Sichuan(Master’s Thesis). Chengdu: Chengdu University of Technology. 1—68.

    [15]

    贾营营,付碧宏,王岩等. 2010. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应. 第四纪研究,30(4): 825—836.

    [16]

    Jia Yingying, Fu Bihong, Wang Yan et al. 2010. Late Cenozoic tectonogeomorphic growth and drainage response in the Longmenshan fault zone, east margin of Tibet. Quaternary Sciences, 30(4): 825—836.

    [17]

    李吉均. 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19(1): 1—11.

    [18]

    Li Jijun. 1999. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibetan)Plateau and the Asian monsoon. Marine Geology and Quaternary Geology,19(1): 1—11.

    [19]

    李涛,陈杰,肖伟鹏等. 2011. 利用变形河流阶地限定帕米尔北缘木什背斜的缩短、隆升和侧向扩展. 地震地质, 33(2): 308—322.

    [20]

    Li Tao, Chen Jie, Xiao Weipeng et al. 2011. Using deformation terraces to confine the shortening, uplift and lateral propagation of the Mushi anticline, northern margin of the Pamir. Seismology and Geology, 33(2): 308—322.

    [21]

    李徐生,杨达源,鹿化煜. 1999. 皖南风尘堆积序列氧化物地球化学特征与古气候记录. 海洋地质与第四纪地质,19(4): 75—82.

    [22]

    Li Xusheng, Yang Dayuan and Lu Huayu. 1999. Oxide-geochemistry features and paleoclimatic record of the Aeolian-dust depositional sequence in southern Anhui. Marine Geology & Quaternary Geology,19(4): 75—82.

    [23]

    李徐生,韩志勇,杨守业等. 2007. 镇江下蜀土剖面的化学风化强度与元素迁移特征. 地理学报,62(11): 1174—1184.

    [24]

    Li Xusheng, Han Zhiyong, Yang Shouye et al. 2007. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang. Acta Geographica Sinica,62(11): 1174—1184.

    [25]

    李有利,谭利华,段烽军等. 2000. 甘肃酒泉盆地河流地貌与新构造运动. 干旱区地理,23(4): 304—309.

    [26]

    Li Youli, Tan Lihua, Duan Fengjun et al. 2000. Response of alluvial landforms to Neotectonics in the Jiuquan Basin, Gansu, Northwest China. Arid Land Geography,23(4): 304—309.

    [27]

    马保起,苏刚,侯治华等. 2005. 利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率. 地震地质,27(2): 234—242.

    [28]

    Ma Baoqi, Su Gang, Hou Zhihua et al. 2005. Late Quaternary slip rate in the central part of the Longmenshan fault zone from terrace deformation along the Minjiang River. Seismology and Geology, 27(2): 234—242.

    [29]

    潘保田,王均平,高红山等. 2005. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示. 科学通报,50(3): 255—261.

    [30]

    Pan Baotian, Wang Junping, Gao Hongshan et al. 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges. Chinese Science Bulletin, 50(7): 657—664.

    [31]

    潘保田,苏怀,刘小丰等. 2007. 兰州东盆地最近1.2Ma的黄河阶地序列与形成原因. 第四纪研究,27(2): 172—180.

    [32]

    Pan Baotian, Su Huai, Liu Xiaofeng et al. 2007. River terraces of the Yellow River and their genesis in eastern Lanzhou Basin during last 1.2Ma. Quaternary Sciences,27(2): 172—180.

    [33]

    冉勇康,程建武,宫会玲等. 2008. 安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率. 地震地质,30(1): 86—98.

    [34]

    Ran Yongkang, Cheng Jianwu, Gong Huiling et al. 2008. Late Quaternary geomorphic deformation and displacement rates of the Anninghe fault around Zimakua. Seismology and Geology,30(1): 86—98.

    [35]

    唐熊,陶晓风. 2009. 雅安地区青衣江流域第四纪阶地特征分析. 沉积学报,27(1): 137—141.

    [36]

    Tang Xiong and Tao Xiaofeng. 2009. Analysis on characteristics of Qingyi River Quaternary terrace in Ya’an area. Acta Sedimentologica Sinica,27(1): 137—141.

    [37]

    杨守业, Jung Hoisoo,李从先等. 2004. 黄河、长江与韩国Keum、 Yeongsan江沉积物常量元素地球化学特征. 地球化学,33(1): 99—105.

    [38]

    Yang Shouye, Jung Hoisoo, Li Congxian et al. 2004. Major element geochemistry of sediments from Chinese and Korean rivers. Geochimica, 33(1): 99—105.

    [39]

    杨晓平,冉勇康,程建武等. 2006,柯坪推覆构造中的几个新生褶皱带阶地变形测量与地壳缩短. 中国科学(D辑),36(10): 905—913.

    [40]

    Yang Xiaoping, Ran Yongkang, Cheng Jianwu et al. 2007. Measurement of terrace deformation and crustal shortening of some renascent fold zones within Kalpin nappe structure. Science in China(Series D),50(1): 33—42.

    [41]

    应立朝,梁斌,王全伟等. 2012. 川西平原中更新世网纹红土主量元素地球化学特征. 高校地质学报,18(4): 759—764.

    [42]

    Ying Lichao, Liang Bin, Wang Quanwei et al. 2012. Major elements characters of the Middle Pleistocene vermicular red clay from the western Sichuan plain. Geological Journal of China Universities,18(4): 759—764.

    [43]

    袁俊杰. 2008. 四川雅安地区第四纪以来活动构造及青衣江水系演化(硕士学位论文). 成都: . 成都理工大学. 1—60.

    [44]

    Yuan Junjie. 2008. The Neotectonic Movement from the Quaternary Period and the Water System Evolvement of the Qingyijiang River Valley in Sichuan(Master’s Thesis). Chengdu: Chengdu University of Technology. 1—60.

    [45]

    张培震,李传友,毛凤英. 2008. 河流阶地演化与走滑断裂滑动速率. 地震地质,30(1): 44—57.

    [46]

    Zhang Peizheng, Li Chuanyou and Mao Fengying. 2008. Strath terrace formation and strike slip faulting. Seismology and Geology, 30(1): 44—57.

    [47]

    张天琪,吕红华,赵俊香等. 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例. 第四纪研究,34(2): 281—291.

    [48]

    Zhang Tianqi, Lü Honghua, Zhao Junxiang et al. 2014. Fluvial terrace formation and tectonic uplift rate: A case study of Late Quaternary fluvial process in the north piedmont of the Tianshan, northwestern China. Quaternary Sciences,34(2): 281—291.

    [49]

    张岳桥,李海龙. 2010. 龙门山断裂带西南段晚第四纪活动性调查与分析. 第四纪研究, 30(4): 699—710.

    [50]

    Zhang Yueqiao and Li Hailong. 2010. Late Quaternary active faulting along the SW segment of the Longmenshan fault zone. Quaternary Sciences,30(4): 699—710.

    [51]

    张倬元,陈叙伦,刘世青. 1982. 论名邛砾石层的成因、时代与青衣江改道. 四川地质学报,(2): 101—102.

    [52]

    Zhang Zhuoyuan, Chen Xulun and Liu Shiqing. 1982. Cause of Mingqiong upland, forming age and river diversions. Geological Bulletin of Sichuan,(2): 101—102.

    [53]

    张倬元,陈叙伦,刘世青等. 2000. 丹棱—思濛砾石层成因与时代. 山地学报, 18(增刊): 8—16.

    [54]

    Zhang Zhuoyuan, Chen Xulun, Liu Shiqing et al. 2000. Origin and geological age of the DanlengSimeng gravel bed. Journal of Mountain Science,18(suppl.): 8—16.

    [55]

    Avouac J P, Tapponnier P, Bai M et al. 1993. Acive thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755—6804.

    [56]

    Bahlburg H and Dobrzinski N. 2011. Chapter 6 A review of the Chemical Index of Alteration(CIA)and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geological Society, London, Memoirs, 36(1): 81—92.

    [57]

    Caceres L M, Olias M, De Andrés J R et al. 2013. Geochemistry of Quaternary sediments in terraces of the Tinto River(SW Spain): Paleoenvironmental implications. Catena, 101: 1—10.

    [58]

    Canfield D E. 1997. The geochemistry of river particulates from the continental USA: Major elements. Geochimica et Cosmochimica Acta, 61(16): 3349—3365.

    [59]

    Dupr E B, Gaillardet J E R O, Rousseau D et al. 1996. Major and trace elements of river-borne material: The Congo Basin. Geochimica et Cosmochimica Acta, 60(8): 1301—1321.

    [60]

    England P and Molnar P. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology,18(12): 1173—1177.

    [61]

    Feng L J, Chu X L and Zhang Q R. 2003. CIA(Chemical Index of Alteration)and its applications in the Neoproterozoic clastic rocks. Earth Science Frontiers, 10(4): 539—544.

    [62]

    Johnsson M J, Stallard R F and Lundberg N. 1991. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin, 103(12): 1622—1647.

    [63]

    Kirby E and Whipple K. 2001. Quantifying differential rockuplift rates via stream profile analysis. Geology, 29(5): 415—418.

    [64]

    Kovda V A, Samoilova E M, Vasilevskaya V D et al. 1968. Geochemical differentiation of products of weathering and soil formation on the Russian Great Plain. In: 9th Trans. Int. Congr. Soil Sci. Adelaide, Australia. 293—301.

    [65]

    Lave J and Avouac J P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research, 106(B11): 26561—26591.

    [66]

    Liu S, Zhang S M, Ding R et al. 2015. Upper crustal folding of the 2013 Lushan earthquake area in southern Longmen Shan, China, insights from Late Quaternary fluvial terraces. Tectonophysics, 639: 99—108.

    [67]

    Liu Z, Zhao Y, Colin C et al. 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Applied Geochemistry,24(11): 2195—2205.

    [68]

    Loughnan F C. 1969. Chemical Weathering of the Silicate Minerals. New York: Elsevire. 1—154.

    [69]

    Lu H H, Zhang T Q, Zhao J X et al. 2014. Late Quaternary alluvial sequence and upliftdriven incision of the rümqi River in the north front of the Tian Shan, northwestern China. Geomorphology,219: 141—151.

    [70]

    McLennan S M. 1993. Weathering and global denudation. The Journal of Geology,101(2): 295—303.

    [71]

    McLennan S M. 1995. Sediments and soils: Chemistry and abundances. In: Rock Physics & Phase Relations: A Handbook of Physical Constants. Washington: American Geophysical Union. 8—19.

    [72]

    Nagell R H. 1962. Geology of the Serra do Navio manganese district, Brazil. Economic Geology,57(4): 481—498.

    [73]

    Nesbitt H W, Markovics G and Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659—1666.

    [74]

    Nesbitt H W and Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299(5885): 715—717.

    [75]

    Nesbitt H W and Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7): 1523—1534.

    [76]

    Nesbitt H W and Young G M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2): 129—147.

    [77]

    Nesbitt H W, Young G M, McLennan S M et al. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology, 104(5): 525—542.

    [78]

    Pan B T, Burbank D, Wang Y X et al. 2003. A 900 k.y. record of strath terrace formation during glacialinterglacial transitions in Northwest China. Geology, 31(11): 957—960.

    [79]

    Potter P E. 1994. Modern sands of South America: Composition, provenance and global significance. Geologische Rundschau,83(1): 212—232.

    [80]

    Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4): 423—449.

    [81]

    Roddaz M, Viers J, Brusset S et al. 2006. Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology, 226(1—2): 31—65.

    [82]

    Sarin M M, Krishnaswami S, Dilli K et al. 1989. Major ion chemistry of the GangaBrahmaputra river system: Weathering processes and fluxes to the bay of Bengal. Geochimica et Cosmochimica Acta, 53(5): 997—1009.

    [83]

    Singh M, Sharma M and Tobschall H J. 2005. Weathering of the Ganga alluvial plain, northern India: Implications from fluvial geochemistry of the Gomati River. Applied Geochemistry,20(1): 1—21.

    [84]

    Singh P. 2009. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chemical Geology, 266(3—4): 242—255.

    [85]

    Tardy Y, Bocquier G, Paquet H et al. 1973. Formation of clay from granite and its distribution in relation to climate and topography. Geoderma, 10(4): 271—284.

    [86]

    Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford, Boston: Blackwell Scientific Publications. 1—312.

    [87]

    Vital H and Stattegger K. 2000. Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 168(1—2): 151—168.

    [88]

    Whipple K X, Kirby E and Brocklehurst S H. 1999. Geomorphic limits to climateinduced increases in topographic relief. Nature, 401(6748): 39—43.

    [89]

    Whipple K X. 2009. The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2): 97—104.

  • 加载中
计量
  • 文章访问数:  3604
  • PDF下载数:  617
  • 施引文献:  0
出版历程
收稿日期:  2015-12-10
修回日期:  2016-04-06
刊出日期:  2016-07-25

目录