欢迎访问现代地质!

现代地质 ›› 2021, Vol. 35 ›› Issue (04): 997-1008.DOI: 10.19657/j.geoscience.1000-8527.2021.043

• 地热资源 • 上一篇    下一篇

沧县隆起中段献县凸起和阜城凹陷岩溶型地热资源特征

黄旭1,2(), 沈传波3,4, 杜利5, 魏广仁1,2, 罗璐1,2, 唐果1,2   

  1. 1.中石化新星(北京)新能源研究院有限公司,北京 100083
    2.中国石化地热资源开发利用重点实验室,北京 100083
    3.中国地质大学(武汉) 资源学院,武汉 430074
    4.中国地质大学构造与油气资源教育部重点实验室, 湖北 武汉 430074
    5.中国石化集团新星石油有限责任公司,北京 100083
  • 收稿日期:2020-12-05 修回日期:2021-03-20 出版日期:2021-08-10 发布日期:2021-09-08
  • 作者简介:黄 旭,男,工程师,1988年出生,构造地质学专业,主要从事构造地质与地热地质研究工作。Email: huangxu1688.xxsy@sinopec.com
  • 基金资助:
    中国石油化工股份有限公司重点科技项目“重点地区地热高效开发技术研究”(J20002)

Geothermal Geological Characteristics of the Xianxian High and Fucheng Sag in the Middle Cangxian Uplift, Bohai Bay Basin

HUANG Xu1,2(), SHEN Chuanbo3,4, DU Li5, WEI Guangren1,2, LUO Lu1,2, TANG Guo1,2   

  1. 1. SINOPEC Star(Beijing)New Energy Research Institute Co. Ltd.,Beijing 100083, China
    2. SINOPEC Key Laboratory of Geothermal Resources Exploitation and Utilization, Beijing 100083, China
    3. School of Earth Resources, China University of Geosciences, Wuhan,Hubei 430074, China
    4. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan,Hubei 430074, China
    5. SINOPEC Star Petroleum Corporation Limited, Beijing 100083, China
  • Received:2020-12-05 Revised:2021-03-20 Online:2021-08-10 Published:2021-09-08

摘要:

为探究华北平原的岩溶热储分布规律,以及如何高效开发利用献县凸起和阜城凹陷地热田的地热资源,结合前人研究成果与已有地热井的测井、地震、水化学等资料,分析了岩溶热储分布规律以及献县凸起和阜城凹陷地热田的四大要素即“源、储、通、盖”等地热地质条件,建立了地热田概念模型,并精细评价了地热资源量。研究表明地热田是形成于渤海湾盆地新生代伸展断陷背景下的受深大断裂控制的传导型地热田,主要以大气降水为补给水源,深大断裂和岩溶不整合面为水运移通道。来自太行山和燕山的水再补给、汇聚,在献县凸起及阜城凹陷岩溶热储中富集,形成中-低温传导型地热系统,具有良好的盖层以及高达3.63~5.31 ℃/100 m的地温梯度。蓟县系岩溶热储顶板埋深1 400~1 500 m,有效厚度累计336.1 m;奥陶系岩溶热储顶板埋深2 000~2 500 m,有效厚度累计55.3 m。献县凸起地热田蓟县系岩溶热储可采资源量3.75×109 GJ,折合标煤1.28×108 t,年开采地热资源量可满足供暖面积4 523×104 m2;阜城凹陷奥陶系岩溶储可采资源量0.80×109 GJ,折合标煤0.27×108 t,年开采地热资源量可满足供暖面积954×104 m2。献县凸起及阜城凹陷地热田开发潜力巨大。

关键词: 地热, 岩溶热储, 地热田, 献县凸起, 阜城凹陷, 地热资源量评价

Abstract:

To explore the karstic reservoir distribution in the North China Platform, and enhance the geothermal energy utilization in the Xianxian high and Fucheng sag geothermal field, we analyzed the distribution of karst reservoir of Xianxian high and the Fucheng sag and the four major influencing factors (i.e.source, reservoir, migration channel, and cover) geothermal fields. Based on logging, seismic, and hydro-chemical data, a conceptual model for the geothermal field is established, and the geothermal resource evaluated. It is considered that the geothermal field is a conductive one, which was formed in a continental extension basin and controlled by deep faults. It formed a medium-low temperature conductive geothermal system, which is characterized by good caprock and geothermal gradient (3.63 to 5.31 ℃/100 m), whose recharged water source comes from atmospheric precipitation in the Taihangshan and Yanshan, and concentrated in karst heat reservoir of the Xianxian high and Fucheng sag. Specifically, the burial depth of the Jixian karst thermal reservoir is 1,400 to 1,500 m (effective thickness 336.1 m) in the Xianxian high geothermal field, whilst the Ordovician karstic reservoir is 2,000 to 2,500 m (effective thickness 55.3 m) in the Fucheng sag geothermal field. The total extractable geothermal resource of Jixian karstic reservoir in the Xianxian high geothermal field is 3.75×109 GJ, (1.28×108 t standard coal eqv.), and the annual geothermal resource can meet the indoor heating demand of 45.23 million. The total extractable geothermal resource of the Ordovician karstic reservoir in the Fucheng sag geothermal field is 0.80×109 GJ, (0.27×108 t standard coal eqv.), and the annual geothermal resource can meet the indoor heating demand of 9.54 million. The geothermal field development potential is likely immense.

Key words: geothermal, karst reservoir, geothermal field, Xianxian high, Fucheng sag, geothermal resources evaluation

中图分类号: