岩土力学 ›› 2020, Vol. 41 ›› Issue (4): 1247-1258.doi: 10.16285/j.rsm.2019.0717

• 基础理论与实验研究 • 上一篇    下一篇

昔格达组半成岩微观结构与力学性质研究

杜宇翔1, 2,盛谦1, 2,王帅3,付晓东1, 2,罗红星4, 5, 田明4, 5,王立纬1, 6,梅鸿儒1, 7   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010;4. 云南大永高速公路有限公司,云南 大理 671000; 5. 云南省交通投资建设集团有限公司,云南 昆明 650200;6. 沈阳工业大学 建筑与土木工程学院,辽宁 沈阳 110870; 7. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
  • 收稿日期:2019-04-21 修回日期:2019-07-07 出版日期:2020-04-11 发布日期:2020-07-01
  • 通讯作者: 盛谦,男,1962年生,博士,研究员,主要从事岩石力学与工程方面的研究工作。E-mail: shengqian@whrsm.ac.cn E-mail:duyuxiang171@mails.ucas.edu.cn
  • 作者简介:杜宇翔,男,1992年生,博士研究生,主要从事地基基础稳定性评价与基础结构优化设计方面的研究工作。
  • 基金资助:
    云南省交通科技项目《云交科教[2017]33号》;NSFC-云南联合基金重点资助项目(No. U1402231);国家自然科学基金(No. 51779250)。

Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation

DU Yu-xiang1, 2, SHENG Qian1, 2, WANG Shuai3, FU Xiao-dong1, 2, LUO Hong-xing4, 5, TIAN Ming4, 5, WANG Li-wei1, 6, MEI Hong-ru1, 7   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China; 4. Yunnan Dayong Highway Construction Company Limited, Dali, Yunnan 671000, China; 5. Yunnan Communications Investment & Construction Group Co., Ltd., Kunming, Yunnan 650200, China; 6. School of Architecture & Civil Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, China; 7. College of Civil Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2019-04-21 Revised:2019-07-07 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the Traffic Science, Technology and Education Project of Yunnan Province ([2017] 33), the National Natural Science Foundation of China (U1402231) and the National Natural Science Foundation of China (51779250).

摘要: 以金沙江寨子村昔格达组半成岩为研究对象,通过X射线衍射、电镜扫描,测定了矿物成分、天然与饱和状态矿物颗粒微观结构;通过三轴压缩试验,研究了昔格达组半成岩受水和围压影响的强度及变形变化规律,并探讨了微观机制;通过对昔格达组半成岩、土、软岩强度指标与含水率的关系进行统计,分析了昔格达组半成岩不同于土和软岩的强度特性,并给出了针对此类岩土体的工程分级建议。研究表明:(1)微观结构显示昔格达组半成岩有明显不同于土和岩石的弱胶结结构特征,在饱和后胶结结构易遭破坏;(2)昔格达组半成岩黏聚力、摩擦角均随含水率增加而减小,平均模量在高含水率下随围压增加而增大,围压一定时随含水率增加而减小;(3)昔格达组半成岩、土、软岩的黏聚力大小为软岩>昔格达组半成岩>土,黏聚力对含水率的敏感性为软岩>昔格达组半成岩>土,摩擦角对含水率的敏感性为土>昔格达组半成岩>软岩;(4)将Φ50 mm×100 mm标准试件的单轴抗压强度在0.2~3 MPa,黏聚力在30~200 kPa的岩土体归类为硬土?软岩,建议在工程实际应用中将其与岩石和土进行区分。

关键词: 昔格达, 半成岩, 含水率, 微观结构, 强度变形指标, 工程分级

Abstract: In this study, semi-diagenetic rock specimens of the Xigeda Formation in Zhaizi village on Jinshajiang River were investigated. The mineral composition of the specimens was determined by X-ray diffraction (XRD), and the microstructure and change of mineral particles in natural and saturated states were observed by scanning electron microscopy (SEM). The influences of water and confining pressure on the strength and deformation of semi-diagenetic rock of Xigeda Formation were determined using triaxial compression test. And the microcosmic mechanism was also discussed. The strength characteristics of the semi-diagenetic rocks of Xigeda Formation different from that of the soil and the soft rock were revealed by statistical analysis of the relationship between the strength indexes and water content of rock, soil and soft rock. On the basis, engineering classification suggestions for the semi-diagenetic rocks of Xigeda Formation were given. Based on the above research, some conclusions are as follows. 1) The microstructure shows that the semi-diagenetic rock of Xigeda formation has weak cementitious structure which is obviously different from that of soil and rock. The cementation structure is easy to be destroyed after saturation. 2) The cohesion and friction angle of semi-diagenetic rock decrease with the increase of water content. The average modulus increases with the increase of confining pressure at high water content, it decreases with the increase of moisture content when the confining pressure is constant. 3) The order of cohesion is soft rock> semi-diagenetic rock of Xigeda Formation>soil. The sensitivity of the cohesion to the water content is soft rock> semi-diagenetic rock of Xigeda Formation>soil. The sensitivity of the friction angle to the water content is soil > semi-diagenetic rock of Xigeda Formation> soft rock. 4) The rocks or soils should be classified as hard soil-soft rock, with the uniaxial compressive strength between 0.2 and 3 MPa, and cohesion between 30 and 200 kPa, measured from a standard specimen (Φ 50 mm×100 mm). It is suggested that it should be distinguished from rock and soil in practical engineering application.

Key words: Xigeda, semi-diagenetic rock, water content, microstructure, strength deformation index, engineering classification

中图分类号: 

  • TU 43
[1] 李波波, 王忠晖, 任崇鸿, 张尧, 许江, 李建华, . 水-力耦合下煤岩力学特性及损伤本构模型研究[J]. 岩土力学, 2021, 42(2): 315-323.
[2] 张继文, 穆青翼, 廖红建, 刘芬良, . 考虑土体孔隙比和比表面积影响的未冻 结体积含水率曲线模型[J]. 岩土力学, 2020, 41(9): 2913-2921.
[3] 罗易, 张家铭, 周峙, 契霍特金, 米敏, 沈筠, . 降雨-蒸发条件下土体开裂临界 含水率演变规律研究[J]. 岩土力学, 2020, 41(8): 2592-2600.
[4] 潘永亮, 简文星, 李林均, 林雨秋, 田朋飞. 基于改进Green-Ampt模型的花岗岩 残积土边坡降雨入渗规律研究[J]. 岩土力学, 2020, 41(8): 2685-2692.
[5] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[6] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[7] 杨凯旋, 侯天顺. 击实试验类型对EPS颗粒轻量土击实特性的 影响规律[J]. 岩土力学, 2020, 41(6): 1971-1982.
[8] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[9] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[10] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[11] 王东星, 唐弈锴, 伍林峰, . 疏浚淤泥化学絮凝−真空预压深度脱水效果评价[J]. 岩土力学, 2020, 41(12): 3929-3938.
[12] 郭君仪, 孙梦雅, 施斌, 魏广庆, 刘洁. 不同环境温度下土体含水率主动加热 光纤法监测试验研究[J]. 岩土力学, 2020, 41(12): 4137-4144.
[13] 黄涛, 方祥位, 张伟, 申春妮, 雷宇龙, . 活性氧化镁−微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306.
[14] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[15] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[5] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[6] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[9] 定培中,周 密,张 伟. 混凝土浇筑施工对穿黄隧洞衬砌垫层渗透性影响试验研究[J]. , 2009, 30(10): 3159 -3162 .
[10] 蒋小伟,万 力,王旭升,武 雄,程惠红. 利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J]. , 2009, 30(10): 3163 -3167 .