首页 | 官方网站   微博 | 高级检索  
     


Laminated tufa sediments formed from overflow karst springs: Controls on their deposition and carbon–oxygen isotope records
Authors:David Domínguez‐Villar  Juan A Vázquez‐Navarro  Kristina Krklec  Sonja Lojen  Ian J Fairchild
Affiliation:1. Division for Marine and Environmental Research, Ru?er Bo?koví Institute, Zagreb, Croatia;2. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK;3. Departamento de Geografía, Universidad Autónoma de Madrid, Madrid, Spain;4. Department of Soil Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia;5. Jo?ef Stefan Institute, Ljubljana, Slovenia;6. Faculty of Environmental Sciences, University of Nova Gorica, Nova Gorica, Slovenia
Abstract:Tufa sediments are freshwater carbonates that precipitate in karst regions after degassing of carbon dioxide from groundwater in contact with the atmosphere. When laminated, these carbonates can provide high‐resolution records for the study of climate, hydrological and environmental conditions at the time of their precipitation. The formation of these carbonates directly depends on the hydrological regime, and in karst regions discontinuous discharges are often recorded. This study investigates the record of recent laminated tufa sediments precipitated downstream overflow springs in Trabaque Canyon (central Spain). The hydrological dynamics of the karst system were monitored for over three years and a stable isotope record was obtained from laminated tufa carbonates precipitated from an overflow spring. Additionally, a hydrological model of overflow springs was generated and a tufa δ18O record under constrained parameters was simulated. Temperature is the dominant control of the variation in tufa δ13C and δ18O values within each lamina, although when comparing different laminae, δ13CDIC and δ18O of river water are also major controls. The positive correlation between tufa δ13C values and water temperature is caused by the fractionation occurred by carbon dioxide degassing due to the thermal dependence of carbon dioxide solubility. Additionally, the system recorded a temperature‐independent degassing process caused by the large gradient between groundwater and atmospheric carbon dioxide that is limited to the proximity of the spring. This study cautions on the risk of assuming continuous deposition when studying laminated tufa sediments and highlights the potential of their stable isotope records to provide hydrological information of their aquifers during the past.
Keywords:Laminated deposit  overflow spring  Spain  tufa  δ  18O record
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号