首页 | 官方网站   微博 | 高级检索  
     


Assessment of the adequacy of the regional relationships between catchment attributes and catchment response dynamics,calibrated by a multi‐objective approach
Authors:H S Kim  S Lee
Affiliation:1. Disaster Prevention Center, Engineering Research Institute, Pukyong National University, Busan, Korea;2. Civil Engineering Division, Pukyong National University, Busan, Korea
Abstract:This study aimed to evaluate the effectiveness of the regionalization method on the basis of a combination of a parsimonious model structure and a multi‐objective calibration technique. For this study, 12 gauged catchments in the Republic of Korea were used. The parsimonious model structure, requiring minimal input data, was used to avoid adverse effects arising from model complexity, over‐parameterization and data requirements. The IHACRES rainfall‐runoff model was applied to represent the dynamic response characteristics of catchments in Korea. A multi‐objective approach was adopted to reduce the predictive uncertainty arising from the calibration of a rainfall‐runoff model, by increasing the amount of information retrieved from the available data. The regional relationships (or models) between the model parameters and the catchment attributes were established via a multiple regression approach, incorporating correlation analysis and stepwise regression on linear and logarithmic scales. The impacts of the parameters, calibrated by the multi‐objective approach, on the adequacy of regional relationships were assessed by comparison with impacts obtained by the single‐objective approach. The regional relationships were well defined, despite limited available data. The drainage area, the effective soil depth, the mean catchment slope and the catchment gradient appeared to be the main factors for describing the hydrologic response characteristics in the areas studied. The overall model performance of the regional models based on the multi‐objective approach was good, producing reasonable results for high and low flows and for the overall water balance, simultaneously. The regional models based on the single‐objective approach yielded accurate predictions in high flows but showed limited predictive capability for low flows and the overall water balance. This was due to the optimal model parameter estimates when using a single‐objective measure. The parameters calibrated by the single‐objective approach decreased the predictability of the regional models. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:regionalization  multi‐objective approach  regional model  IHACRES
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号