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ABSTRACT

The effects of baroclinic basic flow on a paralleled mesoscale disturbance development are investigated.
By using the WKB method, two-dimensional perturbation equations with the anelastic approximation are
analyzed. The result indicates that the symmetric development of a mesoscale disturbance is due to the in-
homogeneous thermal wind deviations and unstationality of the basic field.
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I. INTRODUCTION

Severe convective disturbances usually occur in the form of organized mesoscale sys-
tems such as squall line, mesoscale convective complex (MCC), etc. These organized mesoscale
systems often take place in a distinct synoptic environment, playing very important roles
not only in triggering and organizing smaller convection but also in participating in the
feedback and interactions between the large, meso, and small scale systems. Therefore
it is of great importance to investigate the mechanism of mesoscale system formation. Based
on this point, we have studied the symmetric development of mesoscale disturbance under
the circumstance of weak imbalance between winds and thermal fields.

Great progresses have been made in the past decades of mesoscale dynamics research,
especially in the stability problems of ageostrophic paralleled disturbances under geostro-
phic basic flows. Kuo (1954) studied the symmetric instability (of disturbance). Ooyama
(1966) used the symmetric instability theory to investigate the axisymmetric disturbances
of typhoon. Hoskins (1974), Bennetts and Hoskins (1979), Emanuel (1979), and Ogura,
et al. (1982) considered that mesoscale symmetric instability may play an important role
in triggering and organizing the band-like convective activities. Recently, Kuo and seitter
(1985) have made research on the instability of shearing geostrophic currents in neutral
and partly unstable atmospheres. Zhang (1988) have discussed the symmetric instability
problem in a bounded domain. In this paper, other than the works above, we will use the
WKB method to investigate the evolution of an inertia-gravity wave packet superimposed
on a weakly unbalanced thermal wind current.

II. GOVERNING EQUATION

Zhang (1980) pointed out the anelastic approximation model is suitable to discribe
mesoscale motion, In the f-plane, the linearized anelastic model for the disturbances
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in baroclinic, shearing current can be written as
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and, bar represents basic fields; prime the disturbed fields; pH the heating rate of unit volume,
a(y,z) basic flow; f, the absolute vorticity of basic flow, g basic potential temperature.

For the sake of mathematical treatment, we consider the symmetric development of
disturbances and, let 9F /ox=0 where F is an arbitrary quantity. Then, introducing the
streamfunction yin (y,z) plane, we have
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where, we let Q=0, i, havmg no conSIdcratlon of heating sources. Eliminating the
variables y4 and §, we obtain the single equation of ¢ (y, z)
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Ooyama (1966), Hoskins (1974) and Zhang (1988) discussed the eigenvalue problems of
Eq. (4) under thermal wind balance, i.e. the last two terms were equal to zero. In this paper,
we use WKB method to studv the complete form of Eq. (4).

III. WAVE GROUP ANALYSIS

Let usintroduce the “stretched” space coordinates V=¢y, Z=¢z, andthe “slowly
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varyimn. " time coordinate 7 =gt, and suppose the streamfunction has the following form

y=Aexp(it/e), (5)

where
A=AV, 2, T)=A Y, Z,T) +eA (Y, Z,T) + -, (6)
r=kY +nZ—aT, (7)

e Is a small parameter, and ¢ represents the phase of gravity wave.
Substituting Egs. (5), (6) and (7) into Eq. (4), rewriting Eq. (4) in the form of the power
series of g, and letting the coefficients before every power of ¢ be zero, we have
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where p*=4?+n. Eq. (8) is the dispersive equation and Eq. (9) the amplitude equation.
Using the dispersive relation of Eq. (8), we can easily obtain the group velocities along
the ¥V and Z axes respectlively
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and Eq. (8). we can also get the following equations governing the disturbed wave parameters:
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where 1,=1?(kj+nk), 1°=v*(nj—kk). Substituting Eqgs. (10) and (11) into (%) and
multiplying the both sides of Eq. (9) by A,, we obtain the energy equation
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Substitute Eqs. (18) and (19) into (17), and make use of the following kinetic relationship
of wave paramecters:
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Integrating Eq. (21) in the wave packet domain, and supposing the wave packet has zero am-
plitude at its margine, i.e., 4,=0, we obtain the disturbed wave packet energy equation
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where ¢ represents whole region of the packet,
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IV. WAVE PACKET SYMMETRIC DEVELOPMENT

According to the wave packet energy E = [ [v* A2 dY dZ, we can define the criteria for the

development of wave packet in (V, Z) plane as
>0, for symmetric developing
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Thus the following wave packet energy conservation theorem can be reached: If the large-
scale basic field is stationary and thermal wind-balanced, then the symmetric wave packet
cnergy is conserved, and in such case the packet is neutral.

(2) 1If the basic flelds are thermal wind-balanced but unstationary. then the neccessary
condition for a wave packet to develop is
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If 9.V?/0T >0, the inequality can be rewriticn as
oM*/eT = T off./eT [oM*/oT ;
(k+ 57757 ) [ oN*JaT - (N o) | v <o, (287)

so we have the necessary condition for a packet development when gN?/0T >0
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Similarly, we can also get the sufficient condition for a wave packet to develop when 9o N?*/0T
<0 as follows:
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(3) Ifthe basic field is stationary, but there is no balance in the thermal field and the wind

field, that is, there exists a thermal wind deviation, the development of wave packet will be dis—

cussed as follows:
Denoting the thermal wind by z,, and M*= — g 3Ilnf/@y=fu,. and the thermal wind
deviation by A#yz=a,—u,, we have
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According to Eq. (31), we can analyze the disturbed wave packet development caused by
the basic therinal wind deviation. The symmetric development of a disturbed wave packet
is associated with the distribution of the thermal wind deviation in the packet domain. If
the gradient direction of the thermal wind deviation field is not perpendicular to the group ve-
locity C, (i.e. the direction of wave packet energy propagation), the wave packet may develop:
and if the gradient direction of the thermal wind deviation coincides with C, . the packet will
develop at maximum ratc: and oppositely. the packet will decay at maximum rate when the
gradient direction of the thermal wind deviation is opposite to C,. So that we have the
following models, as shown in Fig. I.
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Fig. 1. Basic modes of the symmetric development of mesoscale disturbances:
(a) for developing; (b) for decaying; and (¢) for neutral.

Since the gravity waves propagate in bidirection when waves develop in one dircction the
waves in other direction must decay.

The developing or decaying of a wave packet is detecrmined by the distribution of thermal
wind deviation of basic fields. As a result, the developing or decaying of gravity wave packet
is associated with the adjustment between the geostrophic wind and the potential temperature
field. When dcveloping, the disturbed wave packet gets energy from the basic field so as to
make the thermal wind deviation and inhomogeneity vanish, finally the thermal wind balance
will be established and the disturbances is no longer devcloping. The real atmosphere is aslo
in such a dynamic equilibrium of both disturbances and basic fields.

V. CONCLUSIONS

The evolution of a gravity wave packet has been investigated by using the WKB and mul-
tiple scale method mentioned above, now it can be concluded as follows:

(1) 1If the basic fields are stationary and satisfy thermal wind balance, the disturbed wave
packet cnergy is conserved.

(2) If the basic fields satisfy thermal wind balance but unstationary, then the necessary
condition for development when 9N?*/87 >0 is

(L y ol o,

and the sufficient condition for development when §N?/87T <0 is
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(3) If the basic fields are stationary, the symmetric developing or decaying of wave packets
is associated with the distribution of thermal wind deviation of the basic field. The process of
developing or decaying is an adjustment of thermal wind. Thus, when basic fields are unstatio-
nary the symmetric developing or decaying of a wave packet under the circumstance of thermal
wind balance is associated with the evolution process of basic fields.

(4) The bidirectional propagating inertial-gravity wave packets will develop in one direc-
tion, but decay in the oppositc il the basic fields are stationary, and these effects are strongest
when the gradient direction of thermal wind deviation coincides with the propogating direction
of the wave packets.
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