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ABSTRACT

This study analyzes the ability of statistical downscaling models in simulating the long-term trend of
temperature and associated causes at 48 stations in northern China in January and July 1961–2006. The
statistical downscaling models are established through multiple stepwise regressions of predictor principal
components (PCs). The predictors in this study include temperature at 850 hPa (T850), and the combination
of geopotential height and temperature at 850 hPa (H850+T850). For the combined predictors, Empirical
Orthogonal Function (EOF) analysis of the two combined fields is conducted. The modeling results from
HadCM3 and ECHAM5 under 20C3M and SERS A1B scenarios are applied to the statistical downscaling
models to construct local present and future climate change scenarios for each station, during which the
projected EOF analysis and the common EOF analysis are utilized to derive EOFs and PCs from the two
general circulation models (GCMs). The results show that (1) the trend of temperature in July is associated
with the first EOF pattern of the two combined fields, not with the EOF pattern of the regional warming;
(2) although HadCM3 and ECHAM5 have simulated a false long-term trend of temperature, the statistical
downscaling method is able to well reproduce a correct long-term trend of temperature in northern China
due to the successful simulation of the trend of main PCs of the GCM predictors; (3) when the two-field
combination and the projected EOF analysis are used, temperature change scenarios have a similar seasonal
variation to the observed one; and (4) compared with the results of the common EOF analysis, those of the
projected EOF analysis have been much more strongly determined by the observed large-scale atmospheric
circulation patterns.
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1. Introduction

Global climate change may lead to changes in hu-

man environment; especially, regional climate change

may have an important effect on the local human and

natural system. Therefore, it is important to assess

and project the regional climate change. Although

the major concern nowadays is global warming, a sur-

face cooling trend from spring to summer has been

observed in the central eastern China since the 1950s.

Hu et al. (2003) found that pronounced warming is

observed in China in winter, spring, and autumn, par-

ticularly in the northern part of China; however, a

cooling trend in central China occurs interestingly in

summer. It is well known that GCMs are primary

tools to reproduce the present global climate change

and project future changes owing to the continuing

increase of greenhouse gas concentration in the atmo-

sphere. GCMs are not generally designed for local

or regional climate change studies due to coarse res-

olution. Therefore, in many climate change impact

studies, there is a need to convert the GCM outputs
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into high-resolution climate scenarios on the re-

gional scale. Two main approaches: dynamical and

statistical downscaling, are used for this purpose.

Dynamical downscaling uses high-resolution cli-

mate models to predict or hindcast climate changes

over the globe or regional sub-domains. Either ob-

served or lower-resolution GCM data are used as

boundary conditions. Dynamical downscaling has the

potential to capture mesoscale nonlinear effects and to

provide coherent information among multiple climate

variables. These models are formulated using physi-

cal principles and they can credibly reproduce a broad

range of climates around the world. The main draw-

backs of dynamical models are their computational

cost and that in future climates the parameterization

schemes they use to represent sub-grid scale processes

may be operating outside the range for which they

were designed. On the other hand, statistical down-

scaling methods use cross-scale relationships that have

been derived from observed data, and apply these to

climate model data. Statistical downscaling has the

advantage of being computationally inexpensive, being

able to access finer-scale information than dynamical

downscaling, and being applicable to parameters that

cannot be directly obtained from global or regional

climate model (RCM) outputs (IPCC, 2007). The dy-

namical downscaling methods have been widely used

in China (Gao et al., 2002, 2003, 2006). The current

study will focus on the research and application of sta-

tistical downscaling methods in China.

In general, any successful statistical downscaling

method should satisfy three conditions: (1) the links

between predictands and predictors are strong; (2) the

predictor variables are well simulated by the GCMs;

and (3) the relationship between predictands and pre-

dictors does not change with time, and it remains valid

in a changed future climate (Fan et al., 2005). Ac-

cording to the second condition, the GCM’s ability to

represent the large-scale structures associated with the

predictors has a relevant role to play in the statistical

downscaling process. Zhou and Yu (2006) examined

the variations of surface air temperature over China

and the globe in the 20th century using 19 coupled

climate models driven by historical natural and an-

thropogenic forcings. They found that most models

perform well in simulating both the global and the

Northern Hemispheric mean temperature evolution in

the 20th century, but few models can produce the sum-

mertime cooling over the middle part of eastern China.

Fan et al. (2007) firstly adopted the multiple lin-

ear regressions (MLRs) of predictor principle compo-

nents (PCs) in the statistical downscaling research,

but they haven’t evaluted the skill of the statistical

downscaling method in simulating the warming trend

of temperature in China. Fan (2009) found that MLRs

of PCs in the statistical downscaling procedure can

produce weaker warming in summer than in winter,

with similar annual cycles to the observation but dif-

ferent from the HadCM3 output. Besides, the re-

sponse of the downscaled annual mean (particularly

summer) temperature to an enhanced greenhouse ef-

fect was weaker than that directly from the HadCM3.

This study will analyze in detail the long-term

trend of temperature in January and July 1961–2006

by using statistical downscaling and try to find out

the reasons behind. Huth (2002) demonstrated that

large-scale free atmospheric temperature and related

variables are more informative predictors of local daily

mean surface temperature than large-scale circulation

fields, and the best results are achieved if one temper-

ature field together with one circulation field are used

as predictors. Fan (2006) and Fan et al. (2007) also

reported that the best predictor sets are 850-hPa tem-

perature T850 and H850+T850 (“H” denotes geopo-

tential height). Especially, compared to the former

(T850), the latter (H850+T850) shows more physical

meanings for the January and July temperature pre-

diction in northern China.

The aims of this study are 1) to check the skill

of the statistical downscaling method in simulating

the long-term trend of temperature by using T850 and

H850+T850 as predictors, respectively; 2) to address

the question whether the statistical downscaling can

reproduce the observed surface temperature even if the

related GCM has a low skill in producing the long-term

trend of upper-air temperature; and 3) to compare the

differences between the projected EOF analysis and

the common EOF analysis (Benestad, 2001, 2002a, b)

in projecting the long-term trend of temperature. The

data used are introduced in Section 2. Section 3 de-
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scribes the methods employed. Section 4 shows the

results, followed by Section 5 that discusses and sum-

marizes the study.

2. Data

The predictand fields are the monthly mean sur-

face air temperature at 48 stations in northern China

from 1961 to 2006 (Fig. 1). The data were ob-

tained from the China Meteorological Data Sharing

Service System. The dataset was processed with

quality control and the statistic values were exam-

ined with time and internal consistency checking.

Some error data were corrected (see the website

http://data.cma.gov.cn for details). Only those sta-

tion records that were complete for the whole time pe-

riod were used for the analysis. T850 and H850+T850

are employed as large-scale predictor variables in Jan-

uary and July. The large-scale climatic predictors used

in this study are derived from the NCEP/NCAR re-

analysis data with a resolution of 2.5◦ in latitude and

longitude for January and July from 1961 to 2006.

The GCM data are from HadCM3 under the 20C3M

and SRES A1B scenarios for the two sub-intervals

1961–1999 and 2050–2099 and ECHAM5 under the

same scenarios for the two sub-intervals 1961–2000 and

2051–2100. The data are available at the IPCC web

site (http://ipcc-ddc.cru.uea.ac.uk). Both predictors

and predictands are normalized using their respective

1961–1990 mean and standard deviation in all further

analyses.

Fig. 1. Research area and locations of the 48 observation

stations (dots).

3. Methodology and initial results

3.1 Statistical downscaling models

MLRs of PCs are used to link the monthly

mean temperature to the large-scale climatic predic-

tors based on their historical observations. Before

using MLRs, EOF analysis is performed as the first

step. For the combinations of two predictors, such as

H850+T850, EOF analysis with the two fields com-

bined spatially is used (Bretherton et al., 1992).

The downscaling utilizes a stepwise screening pro-

cedure that aims to minimize the Akaike information

criterion to obtain the skillful PCs (Wilks, 1995). The

different choices of the number of PCs of each predictor

variable have been made when they are put into the

stepwise regression equation to obtain the optimum

linear regression models for each station in January

and July.

The downscaling method is also evaluated within

the cross-validation framework, where one-year data

are excluded from the predictand dataset, and the re-

gression model is built with the remaining 45-yr pred-

itand dataset, and then one prediction is made for the

excluded year. This is repeated for all years to yield

46-yr predictions for validation. The resulting 46-yr

predictions are then verified against the correspond-

ing 46-yr observations.

In this study, the difference between the mean

values of the second and the first half part of the tem-

perature time series is defined as a long-term trend of

temperature. Huth (2002, 2004) argued that there is

a paradox in the downscaling, as the models are cal-

ibrated with short-term variations and used to make

predictions for long-term changes. He argued that the

two series may have a very high correlation but dif-

ferent long-term behaviors such as trend (Benestad et

al., 2008). Thus, besides the explained variance, the

area-averaged absolute errors of the long-term trend

of temperature between the estimates from the statis-

tical models and the observations are also used as a

skill score to validate the performance of the statisti-

cal models.

The explained variances of cross-validation results

using T850 and H850+T850 as predictors under differ-

ent PCs as inputs to the statistical models are shown
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in Table 1. It is seen that the performance of H850+

T850 becomes a bit better than that of T850 with

the number of PCs increasing (Note that the larger

the variance, the better the performance). The area-

averaged absolute errors in the long-term temperature

trend between cross-validation results and the obser-

vation as given in Table 2 also show the same result

(Note that here the smaller the error, the better the

performance).

According to values of the area-averaged absolute

errors of the long-term temperature trend, the optimal

statistical models are selected for each station and for

January and July. Tables 3 and 4 show that using

the first three PCs as inputs to statistical downscaling

models could get the smallest absolute errors between

the trends of downscaled temperature and the obser-

vation in July for both HadCM3 and ECHAM5. In

general, the absolute errors increase as the number of

PCs go larger (except for HadCM3 using H850+T850

in January), so the present temperature change is es-

timated by using the first three PCs as inputs to the

statistical models and the results are shown in Fig.

2. We can see that HadCM3 and ECHAM5 could not

well simulate the warming trend in northern China in

January (Fig. 2). Comparison of the results in Table

3 and 4 (or the curves in Figs. 2a and 2b) reveals

that statistical downscaling using the first three PCs

of ECHAM5 T850 and H850+T850 as predictors could

better estimate the warming trend as the downscaling

has correctly modelled the trend of the PCs associated

Table 1. Explained variances (%) of cross-validation results to the observation using T850 or H850+T850 as
predictors under different numbers of PCs

Month Predictor
Number of PCs

3 5 10 15 20

January
T850 50.2 51.6 59.5 68.9 70.5

H850+T850 48.1 51.1 63.4 65.4 70.9

July
T850 42.4 55.0 64.2 67.3 70.3

H850+T850 43.9 53.3 65.9 69.2 71.8

Table 2. The area-averaged absolute errors (◦C) in the long-term temperature trend between the cross-validation
results and the observation using T850 or H850+T850 as predictors under different numbers of PCs

Month Predictor
Number of PCs

3 5 10 15 20

January
T850 0.467 0.489 0.360 0.169 0.134

H850+T850 0.423 0.457 0.249 0.156 0.132

July
T850 0.512 0.345 0.262 0.266 0.234

H850+T850 0.379 0.306 0.213 0.201 0.198

Fig. 2. The present long-term trend of temperature. “T3PCs” denotes the model using the first three PCs of T850

as predictors; “HT3PCs” denotes the model using the first three PCs of H850+T850 as predictors. (a) January and (b)

July.
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Table 3. The area-averaged absolute errors (◦C) between the statistically downscaled long-term trend of

temperature derived from HadCM3 and the observed ones using different numbers of PCs in the statistical

models

Month Predictor
Number of PCs

3 5 10 15 20

January
T850 1.15 1.14 1.36 1.34 1.29

H850+T850 1.49 1.48 1.39 1.40 1.29

July
T850 0.31 0.43 0.44 0.49 0.56

H850+T850 0.30 0.36 0.34 0.35 0.40

Table 4. As in Table 3, but for ECHAM5

Month Predictor
Number of PCs

3 5 10 15 20

January
T850 0.93 0.99 1.31 1.57 1.64

H850+T850 0.69 0.70 1.15 1.20 1.32

July
T850 0.76 0.99 0.94 1.02 0.90

H850+T850 0.40 0.38 0.42 0.47 0.47

with the regional warming, while HadCM3 has gener-

ated a warming trend with larger biases due to incor-

rectly modelled trend of the first three PCs. In Jan-

uary, the results of H850+T850 are better than those

of T850 for ECHAM5. In July, the original HadCM3

and ECHAM5 temperature outputs contain no posi-

tive temperature anomalies while statistical downscal-

ing models using HadCM3 variables as predictors have

largely improved the model skills in predicting temper-

ature changes in July and using H850+T850 as pre-

dictors produces better results.

3.2 Statistical downscaling implementation

The optimal statistical downscaling models in

January and July were applied to the HadCM3 and

ECHAM5 IPCC 20C3M and A1B scenarios. Before

this, the two GCMs’ output data were linearly regrid-

ded to the 2.5◦×2.5◦ latitude-longitude grid. The data

to be used as predictors were standardized by the mean

and standard deviation with respect to the 1961–1990

GCM outputs. This procedure ensured that the values

downscaled from the GCM runs were free of the GCM

model bias.

Then, in order to ensure a good correspondence

between the GCM simulated EOFs and the observed

ones, two methods were used. One was that GCM

predictor anomalies were projected onto the observed

EOFs by using the projected EOF analysis; the other

was to find the common EOF of the observation and

the GCM output by carrying out a common EOF anal-

ysis. These two methods were performed using the

tools in the R package developed by the authors them-

selves. The GCM projected PCs and the GCM PCs

obtained by the common EOF analysis were incorpo-

rated into the downscaling models that had been de-

veloped on the basis of the observations. The statisti-

cal downscaling models’ outputs were first inflated by

the inverse of their standard deviations derived from

1961 to 1990, analogical to the observations, in order

not to lose variance, and then were destandardized

by the observed mean and standard deviation. This

approach enabled the downscaling output to be ad-

justed to the observed mean and standard deviation

(Winkler et al., 1997) and resulted in larger fractions

of temperature variance explained by the downscaling

model (Huth, 2004).

4. Results

4.1 Comparison of T850

The skill of the statistical downscaling models de-

pends strongly on the ability of GCMs in simulating

the large-scale predictor variable. It is thus necessary

to evaluate the GCMs’ performance in producing the

long-term trend of T850. It can be seen from the T850

changes in the NCEP/NCAR reanalysis in Figs. 3a,b

that regional warming occurs all over the predictor do-

main in January (Fig. 3a), and only a strong warm-
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ing center appears within 35◦–40◦N, 110◦–125◦E while

cooling dwells in the northwest part of the domain in

July (Fig. 3b). Both HadCM3 and ECHAM5 failed

to simulate the January (Figs. 3c, e) and July (Figs.

3d, f) T850 changes. Compared with the reanalysis,

these two models have produced a cooling trend in

most parts of the domain in January (Figs. 3c, e) and

a totally different pattern of the temperature change

in July (Figs. 3d, f).

Figure 4 shows that in January, the H850+T850

field exhibits similar features to the first EOF patterns

of T850, and is correlated with changes of geopotential

Fig. 3. Comparison of T850 trend (◦C) derived from NCEP (upper panels; 1981–2000 minus 1961–1980), HadCM3

(middle panels; 1980–1999 minus 1960–1979), and ECHAM5 (lower panels; 1981–2000 minus 1961–1980). Left panels

are for January and right panels for July.
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Fig. 4. The first EOF patterns of T850 (left panels) and H850+T850 (right panels) of NCEP reanalysis in January (a,

b) and July (c, d). The red lines are for T850 and the blue lines for H850.

height at 850 hPa. The EOFs of the combined field

of H850 and T850 could well explain the related phys-

ical processes. For example, the first EOF pattern

represents a regional warming (Fig. 4a) that resem-

bles the positive T850 anomaly in the NCEP reanal-

ysis (Fig. 3a) and accompanies the regional positive

change of H850 (Fig. 4b). The first PCs of T850 and

H850+T850 in January are compared in Fig. 5a. It

is found that they are well consistent with each other.

Thus, it is inferred that the first EOF pattern with re-

gional warming accompanied by regional increase of

H850 can largely determine the long-term trend of

T850. The second EOF pattern shows a north-south

variation of temperature associated with the increase

of H850. The third EOF represents east-west changes

of temperature associated with the east-west changes

of H850 (figure omitted).

In July, the regional warming appears in the sec-

ond EOF pattern of H850+T850 (figure omitted). The

PCs associated with the regional warming have also

been compared between T850 and H850+T850 (Fig.

5b) and they are well consistent with each other, simi-

lar to the situation in January. The regional warming

also accompanies a regional increase in H850. How-

ever, it should also be noted from Fig. 4d that the first

EOF pattern of H850+T850 is similar to the trend of

T850 shown in Fig. 3b. One important finding is that

the pattern of long-term trend of T850 in July is ob-

served in the first EOF pattern of H850+T850, not in

the first EOF pattern of T850.
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Fig. 5. Comparison of the PC corresponding to the regional warming between H850+T850 and T850 in (a) January

and (b) July.

Fig. 6. The first PCs of H850+T850 (left panels) and T850 (right panels) from HadCM3 (upper panels) and ECHAM5

(lower panels) projected onto NCEP in January. The black solid lines are for NCEP, the dashed lines for the two GCMs,

the red lines for the present climate, and the green lines for future climate.
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Fig. 7. As in Fig. 6, but for July.

4.2 Present trend of temperature from the

statistical downscaling

The two predictor sets of T850 and H850+T850

derived from both HadCM3 and ECHAM5 have been

projected onto the observed EOF patterns of T850 and

H850+T850 using the projected EOF analysis. For

H850+T850, H850 and T850 from each GCM should

be combined spatially before being projected. The

first PCs from HadCM3 and ECHAM5 are shown in

Figs. 6 and 7. In the present climate, HadCM3 can-

not simulate a warming trend in the first PCs of T850

and H850+T850 in January, while ECHAM5 can pro-

duce a more consistent trend. In July, HadCM3 gives

an increasing trend in the first PC of T850 (Fig. 7b)

and the second PC of H850+T850 (not shown), and

also gives a more consistent increase in the first PC of

H850+T850 (Fig. 7a), whereas the first two PCs from

ECHAM5 could not simulate the temperature trend.

4.3 Future trend of temperature

We now compare the trends of PCs associated

with EOF patterns of the regional warming in Fig.

8. In January, no matter which EOF analysis (the

projected or the common one) is used, PCs have a

similar warming trend. For the projected EOF anal-

ysis, the PC of T850 has a little stronger warming

trend than that of H850+T850. In July, the PC of

the projected T850 has a similar trend to those of

H850+T850 and T850 derived from the common EOF

analysis. However, it is noted that the PC of projected

H850+T850 associated with the regional warming has

a much weaker warming trend than the others.
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Fig. 8. Comparison of PCs associated with the regional warming pattern from HadCM3. “P” denotes PC using the
projected EOF method; “C” denotes PC using the common EOF method. (a) January and (b) July.

Fig. 9. Future long-term temperature trend estimated by the projected EOF method. The difference of the mean
temperature between 1961–1990 and 2070–2099 for HadCM3 and 2071–2100 for ECHAM5 is shown. “T3PCs” denotes
the method using the first three PCs of T850 as predictors; “HT3PCs” denotes the method using the first three PCs of
H850+T850 as predictors. (a) January and (b) July.

Fig. 10. Future long-term temperature trend estimated by the common EOF method. The difference of the mean
temperature between 1961–1990 and 2070–2099 for HadCM3 and 2071–2100 for ECHAM5 is shown. “T10PCs” denotes
the method using the first 10 PCs of T850 as predictors; “HT10PCs” denotes the method using the first 10 PCs of
H850+T850 as predictors. (a) January and (b) July.
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In January, the statistical downscaling method

produces similar trends of temperature with differ-

ent large-scale GCMs and different predictor choices

(Fig. 9). In July, H850+T850 gives a much lower

warming trend than T850. This is probably due to

a lower warming trend in the PC of the projected

H850+T850. Figure 10 shows the future long-term

temperature changes estimated by the common EOF

technique. Although both HadCM3 and ECHAM5

simulate obviously different long-term trends of tem-

perature, the statistically downscaled results using two

GCM variables as predictors can produce similar long-

term temperature change scenarios at most stations.

It is also noted that the results from the common EOF

technique in July have much stronger warming trends

than those in January.

5. Summary

In this study, the statistical downscaling models

using the predictor of H850+T850 rather than T850

gives a better skill for producing the long-term trend

of temperature at most of the 48 stations in north-

ern China. This agrees with the results from Fan et

al. (2007) and Huth (2002). At the same time, the

EOF analysis with the two fields combined spatially

may have more physical meanings than that of a sin-

gle field (Fan et al., 2007). For instance, according

to the results of EOF analysis of H850+T850, the re-

gional warming trends were mainly accompanied by

increases in geopotential height at 850 hPa in Jan-

uary and July. Moreover, the temperature change at

850 hPa has a weaker signal in the EOF pattern as-

sociated with the regional warming in July than in

January. Since the EOF analysis of H850+T850 high-

lights the first EOF pattern, a center of increase in

temperature is located within 35◦–40◦N, 110◦–125◦E,

accompanied by an increase in geopotential height at

850 hPa, and more importantly, this spatial pattern is

similar to the long-term observed temperature change

in July in northern China. We may conclude that

the temperature change in July is associated with the

first combined EOF pattern of H850+T850, not with

the EOF pattern of T850. This finding coincides with

the results of Hu et al. (2003) from a comparison be-

tween the observed seasonal climate variation and the

CMIP2 simulations of 16 models. Their results indi-

cated that the observed long-term variations of win-

ter, spring, and autumn temperatures in China may

be associated with increases in greenhouse gas concen-

trations; however, such a connection is not found for

the summer temperature.

In the present study, the combined EOF pattern

is likely to be explained by strong and enlarged con-

tinental subtropical high, which causes an increase in

air temperature through descending motion. Xie et

al. (1999) analyzed the probability of occurrences of

severe hot weather in northern China during 1950–

1999, and Sun et al. (1999) analyzed the mecha-

nism causing the hot weather in northern China in

July using the mecoscale model MM5. They made

the same conclusion that hot weather is due to the

abnormal strong and enlarged continental subtropical

high, which maintains for a long period of time with

sub-centers settled over northern China resulting in an

increase in air temperature there because of enhanced

descending motion.

Although HadCM3 and ECHAM5 have simulated

a false trend in long-term temperature change for

T850, the statistical downscaling method is able to re-

produce the observed long-term temperature change

in northern China due to correct simulations of the

trend of the first few PC predictors of the GCMs. It is

concluded that the results of the statistical downscal-

ing depend incompletely on the direct GCM outputs

and can effectively reduce the errors of the GCMs.

By projecting direct GCM outputs onto the ob-

served EOFs of H850+T850, the PC associated with

the EOF pattern of the regional warming has a much

lower warming rate compared to that only using single

T850 as the predictor in July. This indicates that the

warming modelled by the two GCMs is never com-

pletely attributed to the increase of H850. The sta-

tistical downscaling of projected EOF of H850+T850

yields a better agreement with the observed tempera-

ture variation and produces a better warming in Jan-

uary than in July. This is completely different from the

scenarios based on the direct HadCM3 and ECHAM5
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outputs. The latter suggested more warming in

summer than in winter. In this case, the projected

EOF analysis generates future long-term temperature

trends similar to the historical observations in spite of

different GCM outputs. This is also different from the

results of Precis (Xu et al., 2006), who showed that

temperature in China will become warmer in summer

than in winter in the 2080s. This is probably because

RCM simulations driven by GCMs will inherit more

errors from the GCMs than the statistical downscaling

method.

From the temperature scenarios derived by the

common EOF analysis, different GCMs could pro-

duce similar trends of long-term temperature change.

Compared with the results of the projected EOF anal-

ysis, the common EOF method produces a warming

in July much stronger than in January and are more

mutually consistent. It is in good agreement with

the direct GCM outputs and RCM simulations, but

contrary to the observation. This is likely because the

common EOFs derived from both NCEP reanalysis

and GCM outputs are mostly determined by GCM

predictors rather than those from only the NCEP re-

analysis, owing to a much longer time series of GCMs.

Compared with the common EOF method, an advan-

tage of the projected EOF method is that it depends

more strongly on the historical observations because

GCM predictors have been forced to project onto the

observed EOFs.
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