首页 | 官方网站   微博 | 高级检索  
     


Quantifying aggregation and change in runoff source in accordance with catchment area increase in a forested headwater catchment
Authors:Tomohiro Egusa  Nobuhito Ohte  Tomoki Oda  Masakazu Suzuki
Affiliation:1. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo‐ku, Tokyo, Japan;2. Graduate School of Informatics, Kyoto University, Sakyo‐ku, Kyoto, Japan
Abstract:There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:aggregation  catchment area  groundwater discharge  runoff source  spatial variability  stream water
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号