黑暗条件下缢蛏(Sinonovacula constricta)对牟氏角 毛藻(Chaeroeeros moelleri)和青岛大扁藻 (Platymonas subcordiformis)的滤食效应^{*}

王伟定 王志铮^① 杨 阳 何 杰 曾国成 (浙江海洋学院 舟山 316004)

提要 采取捕食者-猎物间捕食效应研究方法,研究了黑暗条件下缢蛏对牟氏角毛藻、青岛大扁藻 的滤食效应。结果表明,缢蛏滤食牟氏角毛藻和青岛大扁藻的功能反应均属 Holling-型,拟合的圆 盘方程分别为 $Na = \frac{0.981 \times N_0}{1+0.00039 \times N_0}$ 和 $Na = \frac{0.7949 \times N_0}{1+0.00636 \times N_0}$; 缢蛏自身密度对滤食牟氏角毛藻、青岛大扁 藻功能反应影响的数学模型分别为 $E=0.985P^{-1.0256}$ 和 $E=0.778P^{-1.1819}$; 缢蛏自身密度与牟氏角毛藻、青岛大扁 藻藻浓度间的联合反应方程分别为 $Na = \frac{0.9663 \times P^{-00256} \times N_0}{1+0.00039 \times N_0}$ 和 $Na = \frac{0.6182 \times P^{-0.1819} \times N_0}{1+0.00636 \times N_0}$, 分析了 缢蛏的滤藻速率、滤藻功能反应类型及滤藻效应特征。 关键词 缢蛏,牟氏角毛藻,青岛大扁藻,黑暗条件,滤食效应

由于环境资源总量瓶颈的存在,过度养殖往往 导致养殖业在总产量或单位产量上表现出增长放缓 或倒退的现象(宁修仁,2005),因此,确定合理的养 殖容量对于促进养殖业增产、增收具有重要的现实意 义。

鼎等, 1986, 1999; 严英俊, 1989), 在黑暗条件下开展 了缢蛏对牟氏角毛藻(*Chaeroeeros moelleri*)和青岛大 扁藻(*Platymonas subcordiformis*)滤食作用的实验研 究, 以探析缢蛏的滤食规律, 为养殖区缢蛏及相关滤 食性贝类养殖容量评估提供理论依据。

1 材料与方法

1.1 材料

1.1.1 实验生物 本研究中所用缢蛏 (*Sinonovacula constricta*)均购自舟山定海北门农贸市场,运回实验室立即清除其表面涂泥和其他附着物后,充气、暂养于若干个规格为 45cm×45cm×25cm的泡沫箱内(期间不喂饵),待其排空体内异物后,挑选活力强、壳体完整无损伤、规格相近[平均壳长为(5.32±0.29)cm]的健康个体、经浓度 10mg/L 海水高

通讯作者: 王志铮, 研究员, E-mail: wzz_1225@163.com 收稿日期: 2007-09-17, 收修改稿日期: 2007-10-25

^{*} 浙江省农业科技攻关项目, 2006C32009 号;浙江省高校中青年学科带头人科研基金资助, 2003—2007。王伟定,高级工程师, E-mail: wdwang@sohu.com

锰酸钾溶液中浸泡 5min,并用消毒海水清洗后作为 参试对象;所用牟氏角毛藻和青岛大扁藻藻种购自 宁波大学生物工程研究中心,于自然条件下进行半 连续纯培养,并选取指数生长期阶段的藻液作为实 验用藻。

1.1.2 实验条件 整个实验在全黑暗条件下进行, 以若干个规格为 18cm × 12cm × 9cm 的白色塑料盒作 为实验容器(各实验实际总体积均为 300ml),实验用 水为自然海水经脱脂棉二次过滤、煮沸的消毒海水, 平均水温为(23 ± 1.0) ,盐度为 27—29, pH=8.26。各 实验总时间均为 24h,均以当日上午 8:00 作为实验开 始时刻,以次日上午 8:00 作为实验结束时刻。

1.2 实验方法

1.2.1 缢蛏滤藻功能反应实验 经预实验,确定 24h 全黑暗条件下牟氏角毛藻、青岛大扁藻藻浓度无 显著增长范围,并分别以该范围藻最高浓度作为实 验用藻起始浓度设置上限,按等差间距法设置若干 起始浓度梯度组,其中牟氏角毛藻起始浓度梯度设 置依次为 1.0、2.0、3.0、4.0、5.0×10⁵cell/ml, 青岛 大扁藻起始浓度梯度设置依次为 4.0×10^4 cell/ml、8.0 $\times 10^{4}$ cell/ml, 1.2×10^{5} cell/ml, 1.6×10^{5} cell/ml, 2.0 $\times 10^{5}$ cell/ml。实验时,先将藻液以等体积同时放入各 对应实验容器后,每一实验容器再同时各放入1个缢 经、每一实验梯度重复8次、连续观察缢蛏滤食行为、 每 4h 计取 1 次藻浓度, 计算各观察时段的平均滤食 速率 $V_t = \frac{N_0 - N_t}{t}$ 和单位体积实验藻浓度的减少量 $Na = N_0 - N_e$, 并用 Holling 圆盘方程 Na $=\frac{a \times T \times N_0}{1 + a \times T_h \times N_0}$ (Hoill, 1959)进行拟合, 式中 V_t 、 N_0 、

 N_t 、t、 N_e 、P、a、T、 T_h 依次表示为各观察时段的平 均滤食率[10⁴cell/(h·ind)]、藻初始浓度(10⁴cell/ml)、 t 时刻藻初始浓度(10⁴cell/ml)、观察时段(h)、实验结 束时刻的藻浓度(10⁴cell/ml)、单位体积实验藻浓度的 减少量[10⁴cell/(ml·ind)]、缢蛏个数(ind)、瞬时攻击 率、藻液暴露于滤食者的总时间(d)和处置时间(d)。

1.2.2 缢蛏自身数量对滤藻功能反应的影响实验 牟氏角毛藻、青岛大扁藻分别以 5.0×10⁵cell/ml、1.6 ×10⁵cell/ml 作为实验起始浓度。缢蛏-牟氏角毛藻实 验组合中, 缢蛏数量梯度设置依次为 1、2、3、4、5ind; 缢蛏-青岛大扁藻实验组合中, 缢蛏数量梯度设置依 次为 1、2、3、4ind, 每一实验梯度重复 8 次, 实验结 束时刻记录最终藻浓度,计算滤食率 $E=\frac{N_0-N_e}{N_0\times P\times t}$, 并用 $E=QP^{-m}$ (赵志模等,1990)拟合,式中 E、m、Q依次表示实验阶段每个缢蛏的滤食率、干扰常数和搜 索常数。

1.2.3 缢蛏自身数量与藻浓度间的联合反应实验 缢蛏-牟氏角毛藻实验组合中, 缢蛏数量梯度设置依 次为 1、2、3、4、5 ind, 与其对应的牟氏角毛藻浓度 依次设置为 1.0、2.0、3.0、4.0、5.0×10⁵cell/ml; 缢 蛏-青岛大扁藻实验组合中, 缢蛏数量梯度设置依次 为 1、2、3、4 ind, 与其对应的青岛大扁藻浓度依次 设置为 4.0×10⁴cell/ml、8.0×10⁴cell/ml、1.2× 10⁵cell/ml、1.6×10⁵cell/ml, 每一实验梯度重复 8 次, 实验结束时刻记录最终实验藻浓度, 所得实验结果 采用 $Na = \frac{a \times Q \times P^{1-m} \times N_0}{1 + a \times T_h \times N_0}$ (Hassell *et al*, 1972)进行拟

合。

2 结果

2.1 缢蛏的滤藻特征

观察发现, 实验开始后 5min 内各实验组缢蛏进 出水管均大幅伸出, 此时藻色明显变淡, 并伴有大量 "假粪"出现。各实验组"假粪"除颜色因实验用藻 而异外(牟氏角毛藻组为黄褐色, 青岛大扁藻组为微 绿色), 其数量与形状基本相似。随着实验时间的延长, 各实验组"假粪"出现量均逐渐减少, 3h 后不再有新 的"假粪"出现, 此后, 各实验梯度组的缢蛏水管时 伸时缩, 幅度也不尽同一。

由表1可见, 缢蛏滤食速率变化与藻初始浓度和 藻种类密切相关。同种藻类实验组中, 相同观察时段 的缢蛏滤食速率均随藻初始浓度的增加而增加; 不 同种藻实验组中, 牟氏角毛藻 0—24h 实验观察时段 平均滤食速率随初始藻浓度提高而呈近等速增加, 而扁藻则随初始藻浓度提高而加速增加。同时, 各实 验组还表现出如下相近的滤食规律:即平均滤食速率 以 0—4h 观察时段为最高(为总实验观察时段平均滤 食速率的5倍以上), 以 12—20h 观察时段为最低, 0— 20h 观察时段平均滤食速率随实验时间的延长而下降, 至 20—24h 观察时段平均滤食速率上升回复到 4— 12h 观察时段水平。

2.2 缢蛏滤食牟氏角毛藻和青岛大扁藻的功能反应 根据实验阶段缢蛏对牟氏角毛藻、青岛大扁藻的 滤食结果,用 Holling 圆盘方程 $Na = \frac{a \times T \times N_0}{1 + a \times T_h \times N_0}$ 拟 合得表 2。由表 2 可见, 缢蛏对牟氏角毛藻和青岛大

扁藻的滤食作用的功能反应均属于 Holling-型,其 方程相关系数均大于 $r_{0.05, 4}$,且理论滤食量与实际滤 食量服从 x^2 适合性检验,表明所建方程有意义。

2.3 缢蛏自身密度对滤食作用的影响

由表3可见, 缢蛏滤食作用率E均随自身数量的 逐步增加而渐次呈现出快速下降、缓慢下降、最后趋 于稳定的较为明显的负密度效应特征, 表明邻近缢 蛏个体间存在有明显滤食干扰反应。

所得实验结果用最小二乘法分别求得牟氏角毛 藻组的 Q、m 值为 0.985、1.0256,青岛大扁藻组的 Q、 m 值为 0.778、1.1819。并用 $E = QP^{-m}$ 拟合得缢蛏滤 食牟氏角毛藻、青岛大扁藻作用率与其自身密度相互 关系模型,分别为 $E=0.985P^{-1.0256}$ 和 $E=0.778P^{-1.1819}$ 。 两模型理论滤食量与实际滤食量服从 x^2 适合性检验, 表明所建方程有意义。

2.4 缢蛏自身数量与藻浓度间的联合反应

由表 4 可知, 同种实验藻的 Na 值随藻初始浓度 N_0 和缢蛏数量 P 的等比例增加而呈近等速增加(与表 2 中 Na 值随 N_0 增加的情形相似), 而 E 值则均随 P值增加而明显减少, 呈较为明显的负密度效应特征 (与表 3 中 E 值随 P 值增加情形相似)。且由表 3、表 4 可见, 1 个缢蛏–1.0×10⁵cell/ml 牟氏角毛藻组合、1 个缢蛏–2.0×10⁴cell/ml 青岛大扁藻组合的平均滤食 率分别高于对应的 1 个缢蛏–5.0×10⁵cell/ml 牟氏角 毛藻组合和1个缢蛏–1.6×10⁵cell/ml 青岛大扁藻组合, 即缢蛏自身数量 P 与牟氏角毛藻、青岛大扁藻浓度间 对缢蛏滤食率 E 的改变上具有较明显的联合作用。

表1 不同观察时段下缢蛏对角毛藻、青岛大扁藻的平均滤食速率

Tab.1 The average filter-feeding rate of S. constricta to C. moelleri and P. subcordiformis in different time intervals

藻类	N_0	$V[10^4 \text{cell/h} \cdot \text{ind})]$									
	(10 ⁴ cell/ml)	0—4h	4—8h	8—12h	12—16h	16—20h	20—24h	0—24h			
牟氏角毛藻	10	2.328	0.031	0.047	0.024	0.008	0.062	0.409			
	20	4.525	0.073	0.048	0.028	0.029	0.031	0.789			
	30	7.031	0.122	0.066	0.047	0.016	0.031	1.219			
	40	8.500	0.797	0.360	0.078	0.047	0.094	1.646			
	50	10.781	0.409	0.267	0.156	0.245	0.287	2.016			
青岛大扁藻	4	0.583	0.072	0.035	0.030	0.032	0.046	0.133			
	8	1.036	0.083	0.063	0.093	0.008	0.046	0.221			
	12	1.609	0.266	0.149	0.119	0.051	0.071	0.378			
	16	2.391	0.274	0.101	0.078	0.094	0.109	0.5080			
	20	2.891	0.469	0.212	0.041	0.116	0.235	0.807			

表 2 缢蛏滤食牟氏角毛藻、青岛大扁藻的功能反应模型

Tab.2 The model of function response of filter-feeding by S. constricta to C. moelleri and P. subcordiformis

藻类	$N_0(10^4 \text{cell/ml})$	$N_a(10^4 \text{cell/ml})$	а	<i>T</i> (d)	$T_h(d)$	功能反应模型	x^2	r
牟氏角毛藻	10	9.813 ± 0.259	0.9810	1	0.0004	$Na = \frac{0.981 \times N_0}{1 + 0.00039 \times N_0}$	0.0362	0.9994
	20	18.940 ± 0.563						
	30	29.250 ± 0.535						
	40	39.500 ± 0.378						
	50	48.380 ± 0.694						
青岛大扁藻	4	3.187 ± 0.372	0.7949	1	0.0075	$Na = \frac{0.7949 \times N_0}{1 + 0.00636 \times N_0}$	0.0453	0.9875
	8	5.312 ± 0.998						
	12	9.062 ± 0.943						
	16	12.187 ± 1.308						
	20	16.375 ± 1.094						

注: $x^2_{0.05, 4} = 9.488; r_{0.05, 4} = 0.811$

Tab.3 Effect of density of S. constricta on filter-feeding C. moelleri and P. subcordiformis								
藻类	$N_0(10^4 \text{cell/ml})$	<i>P</i> (ind)	Ε	Q	<i>m</i> –	数学模型及其 x ² 适应性检验		
						数学模型	x^2	
牟氏角毛藻	50	1	0.968 ± 0.014	0.985	1.0256	$E=0.985P^{-1.0256}$	0.00090	
		2	0.491 ± 0.009					
		3	0.324 ± 0.007					
		4	0.224 ± 0.004					
		5	0.182 ± 0.011					
青岛大扁藻	16	1	0.762 ± 0.156	0.778	1.1819	$E=0.778P^{-1.1819}$	0.00396	
		2	0.373 ± 0.039					
		3	0.191 ± 0.035					
		4	0.157 ± 0.027					

表 3 缢蛏自身数量对牟氏角毛藻、青岛大扁藻滤食作用的影响

注: $x^{2}_{0.05, 4} = 9.488; x^{2}_{0.05, 3} = 7.815$

表 4 缢蛏自身数量与牟氏角毛藻、青岛大扁藻浓度间的联合反应

Tab.4 The associated response equations between the density of S. constricta and C. moelleri, and that of S. constricta and P. subcordiformis

范米	$N_0(10^4 \text{cell/ml})$	<i>P</i> (ind)	Na(10 ⁴ cell/ml)	E	数学模型及其 x ² 适应性检验		
				<i>E</i> —	数学模型	x^2	
牟氏角毛藻	10	1	9.813 ± 0.259	0. 981 ± 0.026	$Na = \frac{0.9663 \times P^{-0.0256} \times N_0}{1 + 0.00039 \times N_0}$	0.2008	
	20	2	19.500 ± 0.410	0.488 ± 0.010			
	30	3	29.310 ± 0.921	0.326 ± 0.010			
	40	4	38.632 ± 1.656	0.241 ± 0.010			
	50	5	45.500 ± 2.745	0.182 ± 0.011			
青岛大扁藻	4	1	3.187 ± 0.372	0.797 ± 0.093	$Na = \frac{0.6182 \times P^{-0.1819} \times N_0}{1 + 0.00636 \times N_0}$	2.1704	
	8	2	5.064 ± 1.580	0.316 ± 0.098			
	12	3	7.062 ± 3.822	0.196 ± 0.106			
	16	4	10.060 ± 1.728	0.157 ± 0.027			

注: $x^{2}_{0.05, 4} = 9.488$; $x^{2}_{0.05, 3} = 7.815$

对所得实验结果经 $Na = \frac{a \times Q \times P^{1-m} \times N_0}{1 + a \times T_h \times N_0}$ 拟合,得 缢蛏自身密度与牟氏角毛藻、青岛大扁藻浓度间的联 合反应模型分别为 Na=^{0.9663×P^{-0.0256}×N₀和} $1 + 0.00039 \times N_0$ $\frac{0.6182 \times P^{-0.1819} \times N_0}{1.0002222}$,两联合反应模型理论滤食量与 Na = $1 + 0.00636 \times N_0$ 实际滤食量服从 x² 适合性检验, 表明所建方程有意 义。

3 讨论

3.1 缢蛏的滤藻速率

笔者认为缢蛏滤藻速率与藻种、藻浓度和其固有 的摄食节律有较密切关系。即:(1)实验期间缢蛏滤 食牟氏角毛藻的总体平均速率随初始藻浓度提高而

呈近等速增加, 而青岛大扁藻则随初始藻浓度提高 而加速增加(表 1), 究其原因, 可能是由扁藻较角毛 藻个体大、运动能力强,致使低初始浓度扁藻较难以 被缢蛏高效滤取所致。当然,本实验所设浓度梯度范 围设置可能就在许多学者(Aldridge et al, 1995; Jin et al, 1996; 高如承等, 2007)认为的适宜藻浓度范围内; (2) 在相同观察时段, 缢蛏对牟氏角毛藻、青岛大扁 藻的滤食速率均随藻初始浓度的增加而增加(表 1), 这与Walne(1965)所观察的牡蛎滤藻及高如承等(2007) 所观察的西施舌稚贝滤藻情形相符; (3) 本研究中, 滤藻速率以0-4h观察时段为最高,可能是因受短期 饥饿刺激,滤食欲望获得明显提升,此时藻滤取量超 过其所能消化的载荷,未被消化部分便以"假粪"形 式通过唇瓣排出体外所致,此后随着藻浓度的下降,

滤食概率也随之下降,而 12—20h 观察时段(当日 20:00—次日 4:00)为最低及 20—24h 观察时段平均滤 食速率上升回复到 4—12h 观察时段水平这一特征, 则与池塘养殖环境中藻浓度随日照长度和日照强度 变化节律相吻,也反映了池塘生境中的缢蛏摄食节 律,也与潮间带贝类随潮汐变化表现出当涨潮时加 快摄食,以补偿干露时段的饵料匮乏的摄食节律相 似,即贝类摄食节律与环境中食物丰度变化节律关 系密切。

3.2 缢蛏滤藻的功能反应类型

捕食者与猎物种间关系服从 Holling- 型的情形 多为猎物在空间散布处于均质状态,滤食作用多属 于 Holling- 型,也是基于微藻在水体中随机分布之 考量(赵志模等,1990)。董波等(2000)认为在适合饵料 范围内,滤食性贝类的摄食率和清滤率随饵料浓度 的增加而增加呈幂函数关系,表明滤食作用不一定 属于 Holling- 型。

就运动性微藻而言,其被捕食情形与节肢动物 相似,表现为随着个体规格的增大和运动能力的增 强,其在空间中散布的无序性和离散程度也就明显 增大,致使被滤食随机性进一步减弱。本研究中缢蛏 滤食牟氏角毛藻、青岛大扁藻功能反应则属 Holling-

型,就是由于牟氏角毛藻、青岛大扁藻均为运动性 藻类,致使其在水体中的分布并非均匀所致。

3.3 缢蛏滤藻效应特征

当然, 缢蛏数量密度也会影响其对微藻的滤食 效应, 这是由于邻近缢蛏个体的共同滤食加剧了藻 类间相遇行为发生而引发局部扩散的可能, 致使其 滤食有效性受到干扰和阻碍所致(表 3、表 4),表明藻 类浓度与缢蛏数量密度对功能反应的作用是交互的, 符合自然种群中猎物的密度与捕食者的密度对功能 反应的作用特征(严英俊,1989)。

参考文献

- 方建光, 孙慧玲, 匡世焕等, 1999. 泥蚶幼虫滤水率和摄食率 的研究. 海洋与湖沼, 30(2): 167—171
- 包永波, 尤仲杰, 2006. 几种因子对海洋滤食性贝类摄食率的 研究. 海洋水产研究, 27(1): 76—80
- 宁修仁,2005. 乐清湾养殖生态和养殖容量研究与评价. 北京: 海洋出版社,1—10
- 严英俊, 1989. 草间小黑蛛对褐稻虱的捕食作用及其模拟模型. 福建农学院学报, 18(3): 289—294
- 邹运鼎,王弘法,巫后长等,1986. 龟纹瓢虫成虫对棉蚜的捕 食作用. 生物数学学报,1(1):64—69
- 邹运鼎,陈高潮,孟庆雷等,1999. 饥饿对七星瓢虫捕食作用 的影响. 生态学报,17(10):113—117
- 赵志模,郭依泉,1990.群落生态学原理与方法.重庆:科学 技术文献出版社重庆分社,115—117
- 高如承, 庄惠如, 汪彦喑等, 2007. 西施舌稚贝对 3 种微藻选 择性及摄食率研究. 福建师范大学(自然科学版), 23(1): 70---73
- 董 波,薛钦昭,李 军,2000. 滤食性贝类摄食生理的研究进展.海洋科学,24(7):31—34
- Aldridge D W, Payne B S, Miller A C, 1995. Oxygen consumption, nitrogenous exertion, and filtration rate of *Dressena polymorpha* at acclimation temperatures between 20 and 32 . Can J Fish Aquat Sci, 52: 1761—1767
- Hassell M P, Roger D J, 1972. Insect parasite responces in the development of population models. J Anim Ecol, 41: 661— 676
- Hoill C S, 1959. Some characteristics of simple type of predation and parasitism. Can Entonol, 91: 385–398
- Jin Lei, Barry S Payne, Shiao Y Wang, 1996. Filtration dynamics of the Zebramussel, *Dressena polymorpha*. Can J Fish Aquat Sci, 53: 29–37
- Riisgard H U, 1978. Mohlenberg efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia, 17(2): 239—246
- Wisely B, Reid B L, 1978. Experimental feeding of Sydney oysters (*Crassostrea commercialis = Saccostrea cucullata*) optimum size and concentration. Aquaculture, 15: 319–331

FILTER-FEEDING BY SINONOVACULA CONSTRICTA ON CHAEROEEROS MOELLERI AND PLATYMONAS SUBCORDIFORMIS IN DARK

WANG Wei-Ding, WANG Zhi-Zheng, YANG Yang, HE Jie, ZENG Guo-Cheng (Zhejiang Ocean University, Zhoushan, 316004)

Abstract The effect of filter-feeding in dark by *Sinonovacula constricta* on *Chaeroeeros moelleri* and *Platymonas sub-cordiformis* was studied. The result show that the pattern of functional response in *S. constricta* to *C. moelleri* and *P. subcordi-formis* is of Holling-II type, the fitted Holling's disc equations are $Na = \frac{0.981 \times N_0}{1+0.00039 \times N_0}$ and $Na = \frac{0.7949 \times N_0}{1+0.00636 \times N_0}$, respectively, while that of density to *C. moelleri* and *P. subcordiformis* are $E=0.985P^{-1.0256}$ and $E=0.778P^{-1.1819}$. The associated response equations between the density of *S. constricta* and *C. moelleri*, and that of *S. constricta* and *P. subcordiformis* are $Na = \frac{0.9663 \times P^{-0.0256} \times N_0}{1+0.00039 \times N_0}$ and $Na = \frac{0.6182 \times P^{-0.1819} \times N_0}{1+0.00636 \times N_0}$, respectively. In addition, the filter-feeding rate, the type of functional

reaction and the effect of S. constricta on algae were studied.

Key words Sinonovacula constricta, Chaeroeeros moelleri, Platymonas subcordiformis, Dark condition, Filte-feeding effect