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ABSTRACT

In this paper, the local potential of nondivergent flow on beta plane is derived from the motion equa-
tion. The conscrvation principle for vorticity is obtained when the local potential tends to be minimum
with the variational technique. Some other properties such as Lagrangian of vorticity equation, energy
etc. are also discussed briefly in the paper.
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I. INTRODUCTION

Whitham et al, attempted to find the equivalent variational problem of the conservation
principle for vorticity and then to study the dynamical properties of the waves by means
of the average Lagrange approach. Seliger and Whitham (1968) derived the Lagrangian of
the linear vorticity equation, but failed for nonlinear one. Wu (1987) obtained Lagrangian
by means of the restrictive variational principle proposed by Finlayson (1972). However, the
method is rather flexible and physically, its principle is not quite clear. In this paper, we
try to start from the motion equation instead of the vorticity equation to find the variational
problem with the local potential method proposed by Glansdoff and Prigogine (1971). Phys-
ically, the method is rather elegant. In the paper, the variational problem for barotropic.
nondivergent vorlicity equation is studied. In addition, the effect of orography is also dis-
cussed. Finally, the physical meaning of the Lagrangian obtained is explained.

II. LOCAL POTENTIAL FOR BAROTROPIC NONDIVERGENT FLOW

The motion equation of barotropic, nondivergent flow may be writlen as

ou_, 0P .
ot Lot = ox’ (1z)
ov oD

’a7+§au= v’ (1h)

where 4, v are the velocity components in x,y directions, respectively, and
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L=t+f, t=5e-b, (2)

@ is the total energy and can be expressed as
1
D=¢+5 (u'+v"), (3)

where ¢ is geopotential. On p-plane, f reads
f=fo+By, (4)
where B=df/dy., and it is taken as constant.
If the motion is nondivergent horizontally, then

ou v _
P + ay =0. (5)
Thus a stream function ¢ can be introduced, such that
__% _9%
u= ay ’ U= Ay * ( 6 )
Substituting Eqs. (4) and (6) into Eq. (1), the motion equation is rewritten as
ou_ 0 p o y_ .
at - ax (¢ Saw) ¢ax ’ (73)
o _ 9 _ 9 .
al.~ ay (@ é‘aw) ¢ay’ (/b)
or
oV
2 =~ V(@—Ly) ~yp Vil (7c)

This is a nonlinear equation which has taken into account the g-effect as well as nondivergent
condition. The advantages of the equation were discussed by Wu (1987).
If the reference state is ¢,, then the velocity V can be expressed as
V=V,+§V. (8)
The subscript “0" denotes the reference state and § fluctuation thereafter. In general, any
physical quantity such as yVy¢£, can be expressed as

¢‘V§a: (wvé‘a)o_l_a(wV§ﬂ) . » (9 )
With this expression, Eq. (7) reads
O 2o v (D pL) o (BT 87 (@ pL) —6(yTLo). (10)

The assumption that ¥ and § are exchangeable has been used to get Eq. (10), which implies
that the fluctuation of the flow is continuously differentiable.
Multiplying 8V by Eq. (10), we can obtain

o1 i aVOA _ _

o 5 |OVIT=— 30V -8V -V(P—yLl),
—av'(¢V§a)o_6V'a(¢V§a
—3V -6V (D—yL,), (11)

Since
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SV -V(P—9La) =V -[V(P— L)1~ (@ —9L) V-5V, (12)
with nondivergent condition V-dV=0, we have §V-V(D—¢L.) =V -[SV(D—¢s,)].
Integrating Eq. (I11) over whole region, then we have

AR

S g 10V e == [Z0e Ve — | oV (predude— OV s(pvedde.  (13)

If the fluctuation is small in the neighbourhood of the reference state, then §V -S(pVv¢,) is
much smaller and is negligible. Thus Eq. (13) is reduced approximately to

15 1VItde= — [ 90 oVar = [av - (yv L) de. (14)
Integrating Eq. (14) with respect to time, we have
(1 2 AR
’\EIJV]“dr:— \L ot +(pVED, ]'Vdrdi;‘o. (15)
Let
AR
F('ﬁ’fﬁu):*wi +(YValo J Vdzdt. (16)

Then the right hand side of Eq. (15) is equal to §F. The quantity £ (y,¢,) can be con-
sidered as a functional of two variables.
The increment of F around the reference state is

AFZF(#JN/J )—F(¢091/J0)

oV,
i[ at (l/’Vga) :}'(VO—V)def. (17)
At the reference state, ¢=¢,. i.e. V=V, thus
AF=0. (18)
From Eq. (15), we know that when the state deviates the reference state, i.e. g =%, then
AF>0. (19)

As far as the whole system is concerned, in the neighbourhood of the reference state, the fol-
lowing relation holds:

jEF(w,wo)—F(wu,wo>]dfdt>o. (20)

This property of F(4,14,) is schematically shown in Fig. 1. Fig. 1 indicates that

T
! i

! ]
Po~dp ¥y potdy Y

Fig. [. Schematic diagram of F(y,90),
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-F (¢, ) bas the feature: for 3y

OF
o l|1/v=v/r0 ’ 21

This shows that F (4, ,) is minimum when ¢=y,. 1If V, the velocity is expressed by
the steam function, then the Euler-Lagrange equation is obtained

OF _ 0 (0% u o ( &Yy B _
8¢ ly=y, Ox (atay gy >!v/v=u"0 +a_v( stox Yok ) poyy 0 (22)
After manipulating, [Eq. (22) may be written as
a 2
2V et/ (e, vip+f)=0. (23)

This is the conservation principle of vorticity for nondivergent fluid.

Glansdorff and Prigogine (1971) called the functional with the properties of Egs. (19) and
(22) as local potential. With the motion cquation and local potential, the vorticity equation
can be derived by variational method. In other words, this implies that the conservation
principle of vorticity is related to the minimization of the local potential.

Similarly, the aforementioned method can be easily used to the steady case. The local

potential is

F(w’wo):~)(¢V£a)o'Vdef- (24)
When ¢ =y,, F(¢,y,) reaches minimum, that is
OF
< =0.
6¢ Y=gy
Thus the Euler-Lagrange cquation can be expressed as
J(¢,Viyp+7)=0. (25)

This 1s the conservation principle of vorticity in the steady case.
HI. LOCAL POTENTIAL INCLUDING TOPOGRAPHIC EFFECT

The above-mentioned method can also be generalized to the case that the topographic
effect is included. For the homogeneous, incompressible fluid, the continuity equation is
where [) is the depth of water, and A the height of the topography. V can be written as

. h —1
V=(1-5]) kxvy. (27)
Substituting Eq. (27) into the motion equation, obtain
ou_ 8T, o _hyt o e Ay
== Pt (1-5) v me o e i-5) " ) (282)
ov ] ’ h\! ] ANt
5o otli-p) s |- Sla(-p)" | (281)

Similar to the approach described in Section 11, the local potential is expressed as

Py == G +pv (6(1-F) ), ] Vaear, (29)
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From the minimum condition of the local potential, i.e

(SF
—0, 30)
8 iy, 0 (
the expression
% L . _hNTY L
S (vern(i-5) )=0 (31)

is derived, where £=(dv/ox) — (Qu/dy). By means of Eq. (27). ¢ can be written as

=l ) S al0-p) S (52

Hence, Eq. (31) is the voticity equation when the topographic effect is taken into consideration.
IV. LAGRANGIAN AND LOCAL POTENTIAL

Whitham derived the Lagrangian for the linear vorticity equation by means of the follow-
ing procedures.
The linear vorticity equation may be written as

ﬁ (7x (33)
Let
oF
Then Eq. (33) is reduced to
O°F 7&_1;_
Vi B pray <0 (35)
It is easy to verify that this equation is equivalent to minimizing the functional J in the form
( O°F \? O'F \* oF oF
J—,\[( avor ) Tayat) —B oy af]d“l‘ (36)

In other words, the Euler-Lagrange equation of Eq. (36) is Eq. (35). From Eq. (36), we know
that the Lagrangian is

1 ' )2 oO'F oF oF |
L= 2[( %0t (\ayat,) P el
Physically, both the first and the second term on the right side of Eq. (37) are Kinetic energy,
which may be proved directly by Eq. (34). The third term is the potential energy of wave,
which was verified by Bachwald (1972).

For the mean flow, the motion equation may be written as

(37)

v,
2 = =@~ pL)0~ (PV Lo (38)
or
e (§TE)o= =V (D~ pEa).. (39)

Substituting this relation into Eq. (16), the local potentlal is obtained
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F(#”#’o):l‘\V(@_¢§a)o'vdtdf- (40)
Since v (@ —yL.), is a conservative force, Eq. (40) then expresses the total work done by
the conservative force. (P —y(l,), can be written as

(@ ptda=got 5 (ul +08) — ($L)os (41)

where ¢, is the potential energy, (1/2)(ui -+v}) the kinetic energy, and (yé,), is one
kind of energy caused by vortex motion and called as vortex energy. Thus the local potential
is the total energy caused by the gradient forces of energy. In some sense, it is similar to La-
grangian.

From the above discussion, it can be seen that the processes to find the extremum by
means of Eq. (16) correspond to those to operate curl to the motion equation. In other words,
the processes to derive the vorticity equation, in a physical sense, is those of minimization of
the local potential.

In terms of the local potential, we can find the approximate solution with minimal errors.
With Prigogine’s method and principle of functional extremum, we choose the basic function
such that the coefficients of the approximate solution may be determined by the way of
minimazing errors. To some extent, this approach is similar to the truncated spectral method
widely used in meteorology. However, the spectral method truncates to several terms by as-
sumtion or by experiences while the local potential approach contains the minimization of the

error.
An illustration of the method is given by the following simple example. Let

= A ¢ o= >, A (D, (42)

where ¢, is the element of coordinate which in general may be represented as a complete sys-
tem of orthogonal function or secme special functions. In this connection, we may refer to
the Galerkin’s method.

In practive, » in taken as a finite number. The problem is how to select such coefficients
A,(t) that the total error of the solution tends to be minimum. Assuming

go=ei’ 8, =k.x+m.y, (43)
where @, is the phase of the nth wave, k, and m, are wavenumbers in x, v dircctions, respec-
tively. When ¢, is a real function,

An: —_A-n! -AH:AfI}' (44)

In terms of orthogonal condition, i.e.,
0, n¥*m

| #uude= (15)

1, n=m
and the conjugate condition
0, 6,+06,+8.%0

Swmm%dr:{l, 0,+6,+6,=0 e

the local potential can be expressed as

F(l,bﬂbo) = Z[on (mz‘i +kﬁ‘) _ﬂiks-AU:
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4—2 Z(mskp—mpks)(mi+ki)A9,.A?,]AS, (47)
I3 4
The process of finding extremum of F'(y,¢,) is equivalent to finding 4, by Eq. (47), ie.,
aF 0
ﬂs — VU -As_-As- (48)

This has been discussed in detail by Glansdoff and Prigogine (1971).
By means of Egs. (47) and (48). wec obtain

(B +m2)d, =ik, A, — Z Z(mskp —mpks) (m: +E) ApAq s (49)

where p and g are the indexes making Eq. (46) hold.

The above process of finding A4, is similar to that of taking the truncated finite terms in
Eq. (42) and then substituting them into Eq. {23). However, it includes the process of finding
the variational extremum while the truncated spectral method is just of experience.
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