首页 | 官方网站   微博 | 高级检索  
     


Hierarchically nested river landform sequences. Part 1: Theory
Authors:Gregory B Pasternack  Dastagir Baig  Matthew D Weber  Rocko A Brown
Affiliation:University of California, Davis, Davis, USA
Abstract:Past river classifications use incommensurate typologies at each spatial scale and do not capture the pivotal role of topographic variability at each scale in driving the morphodynamics responsible for evolving hierarchically nested fluvial landforms. This study developed a new way to create geomorphic classifications using metrics diagnostic of individual processes the same way at every spatial scale and spanning a wide range of scales. We tested the approach on flow convergence routing, a geomorphically and ecologically important process with different morphodynamic states of erosion, routing, and deposition depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality represent this process at any flow; they are nozzle, wide bar, normal channel, constricted pool, and oversized. These landforms are then nested within themselves by considering their longitudinal sequencing at key flows representing geomorphically important stages. A data analysis framework was developed to answer questions about the stage‐dependent spatial structure of topographic variability. Nesting permutations constrain and reveal how flow convergence routing morphodynamics functions in any river the framework is applied to. The methodology may also be used with other physical and biological datasets to evaluate the extent to which the patterning in that data is influenced by flow convergence routing. Copyright © 2018 John Wiley & Sons, Ltd.
Keywords:river topography  river classification  flow convergence routing  fluvial geomorphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号