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ABSTRACT

The KdV equation with topography included in an N~level model is derived. It is shown that if the topography ex-
ists, the KdV equation may describe the solitary Rossby waves in the case of basic current without vertical shear, and it
15 no necessary to introduce the MKdV equation. The results of calculations show that the change of horizontal shear
pattern of basic flow may cause an important change of the streamline pattern of the solitary waves with the odd
meridional wavenumber m, and has no effect for the even meridional wavenumber m. The vertical shear increases the
steepness of the barotropic solitary modes, and it has a complicated effect on the baroclinic modes. The influences of
topographic slope on the solitary waves are very great. The southern and northern slopes of topography may cause dif-
ferent solitary wave patterns, with the effect of northern slope greater. The effect of Froude number on the solitary
waves 1s generally to steepen the solitary waves, however, the effect also depends on the meridional wavenumber m and

the modes of solitary wave.
Key words: topography. solitary wave, N—level model
[. INTRODUCTION

Lu (1987. 1988) has studied the influences of the horizontal shear of flow and topography
on the streamline pattern of the solitary Rossby waves by using a barotropic model. Hukuda
(1979) discussed the effects of vertical shear of basic current by using a two~level model. The
barotropic model cannot describe the baroclinity of atmosphere, and the two—level model may
be excessively simple for denoting the vertical shear of the flow, thus the real baroclinity of at-
mosphere cannot be expressed appropriately. However, the multilevel model may describe quite
well the vertical structure of atmosphere. For this reason we will derive an N—level model in-
cluding topography to extend Hukuda’s work, and study the effects of vertical and horizontal
shears of basic current and topography on the solitary Rossby waves. For simplicity, we will
calculate the streamline patterns of solitary waves by using a three—level model.

1I. KDV EQUATION IN AN N-LEVEL MODEL

Eliminating «» between the vorticity equation on level / and the thermo—dynamical equa-
tion on level /+1 / 2, and utilizing the boundary conditions w, ,,= 0 at upper boundary, and at
lower boundary
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and then introducing the scales
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yield a set of potential vorticity equations
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correspond to the static stability parameter, the rotating Froude number, and the effect factor of
topography, respectively.
The boundary conditions may be written as

oy,
= = oas ’)
o , 0,1. (I=1,2,+,N) (2)
Similar to Clarke (1971), we consider the following transform
Y, =y (x —ct'y), (3)

then we may obtain the KdV equation independing of time and the permanent form of solitary
wave which satisfies the KdV equation in the form (see Appendix for details)

do do d (15

ClEldé dé 0’ (4)
where 1
E, =f g[wf/(ﬁ,—co)]M,(y)dy,
E =— sl —C M (y)d
2 J.o:=|l: 1/( )] ()’) Y,
E3=f %‘Pfdy,
41, L B
M,(V)=[ﬂ— 3 +F,(u,—u2)J/(u,—C0), (%)
dy
d*u, _ _
Ml(y)=[ 2 r 1—1 2u +ul+|)]/(u1_co)‘
dy
d'u, B
MN(y)=[ﬁ-— > —F (u,_, —u,)+H, ]/(u C,).
dy

(I=237N—1)
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The KdV equation (4) has a special solution (®—0 when &— * o) referred to as soliton,
namely,

® (&) = sgn(E, E, )sech” (ué), (6)
where
E
¢, =- 3E 3o Sen(ELE,),
E,) 1/2 .
”:'1253 . 7

and p expresses the steepness of baroclinic solitary Rossby waves.

I1I. SOLITARY ROSSBY WAVES IN THE CASES OF PRESENCE OF FLOW WITH WEAK HORIZONTAL
SHEAR AND TOPOGRAPHY

Assume the basic flow as
W, =u,+S,u, +oky, (l=12,,N) (8)
where S; u_ expresses the vertical shear of flow, and S, is taken as different constants at differ-
entlevels, u , u_and k are the specified constants, 5(«< 1) is a small parameter denoting the in-

tensity of horizontal shear of the basic flow.
Expand ¥ and C, in powers of 6 as follows:

{lp =97+ 67" +5'F +-,

€))
C,=C, +3C, ++-.

For the sake of simplicity, take dh/dy=1I, h,, and I, and A, are both constants. From
(All) and (A12) in Appendix, we obtain the lowest order approximation equations as

PN
_ — (

(u0+S!u:—COO)|: p 3 +F’<T20)_w(lm>:|
(0)

+B+Fu (S, —S,)¥, =0,

2 )
d
(EO+S,E:—COO)[ . +F,<~P,‘°+’, —2¢" +y?” )]

dy
+[B—F u (S,_, —25,+S, ¥ = (10)
2 4y (0)
(170+5N17:—c00)[dd:’2” —F,< ¥ — ]
+B+F,u (S, —S,_,)+H 1K ¥, =0,
\Pj‘”=~P§°’=---=W$’=0, y=0,1.

(I=23N—-1)
The first order equations are
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It is easily shown that the solutions of Eqs.(10) may be written as
¥ =4 sinmny. (l=127,N) (12)

Substituting (12) into (10) gives
(m'n’ +F —[B+Fu (S, —S)/(a,+8i, —Cy, )4 —F 4,=0

Fod4,_ —{m= +2F _[ﬁ_FrEs(Sl—l —25, +514u)]’/(‘70 +8u HCoo)}A/
+F 4, =0, (13)
FA, —{ma +F —[B+Fu/(S, —S, )+HIh]1/(,+Si —C N4, =0.

(=23 N—1)
The condition that A4; has nonzero solutions leads to an N—order algebraic equation
of u,—C,, which gives N modes of Rossby wave, one of them is barotropic mode, and the
others are baroclinic (Pedlosky, 1979).
For simplicity, assuming r,= 4,/ 4, in Eq.(13), we obtain
ro= 1,

=m'n’ +F)/F —[B+F (S, —S)/IF @,+S u —Cy,l

=l n +2F)/F —[B—Fu (S, , —25,+5,. )/ (14)
[F ity + 8,4 —C ), =7,
Fy =Tno) / 4,

where
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From the solvable condition of the first order Eq.(11), the following expression may be easily
obtained

=k/2.
From the functional forms of the right terms of (11), it is obviously seen that the special solu-
tions of (11) may be written as

lIlll)

4

=a,(y)sinmny + b, (v )cosmmy. (15)
Substituting them into (11) gives

a, ()= {Ekr, /|:4ml7r2 (%rf)] }y,

b, ()= {Ekr, /[4mn‘)§.}rf } } v-y).

Performing a tedious calculation of integrations (5), we obtain the coefficients of the KdV

(16)

equation as follows:
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NTB,B ¥
E, = —(5ES° S /(6m n Zr ))Z — +(252k3/mn)2(r?ﬁi/u:), m: even
=1 U =1
E, %z +OEk / (0m ),
where
:ﬁ+Frl7x(Sl -5, +~2||: Zﬂ_FrEJ(Sr—l —2S, +S|+1)]+r2ﬁ+1:r17x(SN_SN—l)
W, *Su —C) 2L " (@, +8u,~Cy) Y@, + S, —C,)
u, =u, +Su —C,, B,=B+F (S, —S,u_,
‘B.’:HAFr(SI»I_2S[+Sl+l)17:’ ﬂN=ﬁ_Fr(SN—l_SN)L_I:-'_Hlllhl"

(I=23,0N—1)

Hukuda has shown in his study of the two—level model that if the basic current has no ver-
tical shear, the barotropic and baroclinic modes would become the pure barotropic (r,=1) and
baroclinic modes (r,=—1) respectively, and in this case the KdV equation could not describe the
pure baroclinic solitary waves on the flow without vertical shear since E,=0, and it is necessary
to introduce the so—called MKdV equation. However, from the expression of E, in (17) it is
easily known that for the multilevel model including topography the case of E,=0 cannot exist
even if the flow has no vertical shear. In other words, the KdV equation in this case may still
describe the barotropic and baroclinic solitary waves, and the MKdV equation need not be in-
troduced. We will give the calculating results for the above case.
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Now, the streamline patterns of solitary waves at each level may be calculated by using the
following expression:

E
Y (Ey)= —f u,(y)dy +esgn(E, E,)sech” <’17E
({=1.2,,N)

1.2

é)(\y“” +5%), (18)

IV. EXAMPLES

We discuss the effects of topography on the solitary Rossby waves in terms of a simple
three—level model. Assume the basic flow in the form

Two types of vertical shears of ﬂow, namely, D—shear (S§,=0, S,=1) and non—shear
(5,=0, S,=0) are taken with emphasis on topographical effects. The horizontal shear of flow is
taken to be cyclonic (k=-—1) and anticyclonic (k=1). For the topography we calculate
separately the southern—slope (/, = 1) and northern—slope (/,=—1). In addition, we consider the
effects of Froude number, and calculate two cases of F,=0.5 and F,=0.2. In the all calculations,
we takeu , u =1,6=0.1,0=0.001 and h,= 1.

1. Effects of Horizontal Shear of Flow

Hukuda did not discuss the influence of the horizontal shear of the basic flow in his work.
In the paper (Lu, 1987), we only discussed the cases of the basic flow with anticyclonic shear and
the effects of the easterly and westerly flows, and in another paper (Lu, 1988), we emphaticaliy
studied the effects of the flow with weak quadric meridional shear. The results of calculations
show that the variation of horizontal shear pattern of flow has no effect on the solitary wave
with even meridional wavenumber m, but it has important influence on the solitary wave with
odd m , and may cause violent change of solitary wave pattern, becoming a completely opposite
form. The change of streamline pattern is independent of the topography if topographic height
is about 1 km. As shown in the paper (Lu, 1987), if the characteristic height of topography is
quite high (about 4km) the solitary wave patterns may also change for the flow with anticyclonic
shear (see Fig. 1 in Lu (1987)). In addition, for the easterly and westerly flows with the same hor-
izontal shear form the solitary wave patterns may also change (see Fig. 2 in Lu (1987)). For the
present, only the influences of westerly basic flow with different shear forms and topography
with height about 1 km will be considered. Comparing Fig. 1a and Fig. 3 in Lu (1987) to Fig.1a
and Fig.2a in this paper respectively, we easily see that they are similar , and that the barotropic
model may show some primary features. The calculations also show that the effect of horizontal
shear of flow on the solitary waves with odd m is irrelevant to the solitary wave modes. When
the horizontal shear form changes from anticyclonic (k= 1) to cyclonic (k=—1). the streamline
patterns of solitary wave with m=1 will transform from ridge to trough at all levels (Figs. Ia,
1b). The changes are similar for all the different solitary wave modes. Figs. 1c and 1d give the
streamline patterns of m =3 for the different horizontal shears. When the shear pattern changes
from anticyclonic to cyclonic, the streamline patterns are completely opposite. However, the
change of horizontal shear form has no influence on the solitary wave pattern for the case
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Fig. 1. The streamline patterns of solitary Rossby wave for meridional wavenumber m=1 and 3. (F,=0.5,
D-shear pattern). (a) Anticyclonic horizontal shear and southern slope of topography; (b) Cyclonic shear
and southern slope; (c) Anticyclonic shear and northern slope; (d) Cyclonic shear and northern slope. (a)
and (b) : m= 1, barotropic modes; (c) and (d) : m=3, upper figures —baroclinic modes 1, lower figures —

baroclinic modes 2.
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Fig. 2. The streamline patterns of solitary Rossby wave

for meridional wave number m=2.

(b) (Anticyclonic shear, southern slope of topogra-
phy, basic flow with no vertical shear). (a)

barotropic mode; (b) baroclinic mode 1.
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Fig. 3. Asin Fig. 2 but for flow with D—vertical shear.
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of even m. It is easily known from the expression of coefficients of the KdV equation (17) that
the forms of solitary waves are mainly determined by the nonlinear terms E, . For the case of
odd m, the first term in the expression of E, plays a decisive role since § is a very small value,
therefore, the sign of k& determines that of E,, which, in turn, determines that of the streamline
pattern of solitary waves. And on the contrary, for the solitary wave with even m, the change in
sign of £ has no effect on E,, and thus there is no influence on the solitary wave pattern.
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2. Effects of Vertical Shear of the Basic Flow

Hukuda (1979) has shown that the vertical shear of flow has a tendency to steepen the soli-
tary waves. Our calculations show that the influences of vertical shear are complicated, it gener-
ally steepens solitary waves(especially for barotropic modes), but its effect also depends on the
specific mode, the level of geopotential surface, the value of F,, and the slope of topography.

Fig. 2 shows the patterns of solitary waves for m =2 in the case of basic flow with no verti-
cal shear and topography with southern slope. Fig. 3 gives streamline patterns in the case of
flow with vertical shear. Comparison of Fig. 2 with Fig. 3a shows that the vertical shear of flow
steepens obviously the steepness of barotropic solitary modes, and for the baroclinic mode 1 of
solitary waves at mid—level it may cause the streamline patterns to change greatly (see Fig. 2 and
Fig. 3b). and for the baroclinic mode 2, on the contrary, the steepness of solitary waves de-
creases to some extent (figures not shown). The results of calculations also show that for the sol-
itary waves with m =1 the vertical shear increases the steepness of solitary wave in the area of
southern slope of topography, and decreases that in the area of topographic northern slope. For
the case of m=2, the results are more complicated in the area of northern slope than that of
southern slope.

3. Influences of Froude Number

Hukuda (1979) has also shown in his paper that the steepness of solitary wave increases
with decreasing Froude number F,. However, our calculations show that the influence of F, on
the steepness of solitary wave is complicated, it depends on the meridional wavenumber, and the
specific mode. For m=1, as shown by Hukuda, the steepness of solitary wave increases with de-
creasing F, (Fig.4), the conclusions are also the same for the barotropic mode and baroclinic
mode 1 in the case of m=2. However, for the baroclinic mode 2, the steepness of upper solitary
waves decreases with decreasing F(figure not shown). For the case of m=3, the situation is
more complicated.

4. Effects of Southern and Northern Slopes of Topography

The solitary wave patterns are generally different in the area of southern and northern
slope of topography. The parameters in Figs. 5 and 2 are the same but topographic slope. Fig.2
is the results for the southern slope , and Fig. 5 for the northern slope. Comparing these two fig-
ures shows that the patterns of solitary waves are quite different. For the northern slope, the
streamlines of barotropic mode are straight (figure not shown), and for southern slope the
streamline patterns are those of the lower in the north and higher in the south. For the
baroclinic mode 1, the solitary wave patterns in the northern slope are those of the higher in
north, and the lower in south, and in the southern slope they are straight. For the baroclinic
mode 2, the streamlines are straight in the southern slope, and in the area of northern slope they
are those of the lower in south and the higher in north. Generally, the influences of northern
slope on the solitary wave patterns are greater than that of southern slope, and the value of
topographic slope also has influence, however, its effects are small compared to that of the form
of topographic slope.
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Fig. 5. Asin Fig. 2a, but for northern slope of topography: (a) baroclinic mode 1:(b) baroclinic mode 2.

In addition, the different modes of solitary wave generally have different steepnesses, and in
some cases there even occurs a completely different streamline pattern (in Fig. 5). The solitary
waves at different levels usually have different forms or steepnesses.

V. CONCLUSIONS

(1) The KdV equation including topography in an N-level model may describe solitary
Rossby waves in the case of basic flow with no vertical shear, and it is not necessary to introduce
the MKdV equation.

(2) The change of horizontal shear form of basic flow has no influence on the streamline
pattern of solitary Rossby wave if its meridional wavenumber m is even. But for the solitary
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wave with odd m, it has tendency to transform the solitary wave pattern into a completely oppo-
site form, and the transforming is independent of topography (if the topography height is
lower).

(3) The effects of vertical shear of flow on the solitary wave depend not only on the specific
mode and Froude number but also on the meridional wavenumber and topography. For the
barotropic mode, the vertical shear has the tendency of steepening the solitary wave, and for the
baroclinic modes, the vertical shear may increase the steepness of solitary wave or decrease the
steepness and even change completely the characters of solitary wave, all of those depend on the
meridional wavenumber, specific mode and southern or northern slope of topography.

(4) The influence of Froude number on the steepness of solitary wave is important. For the
barotropic mode and baroclinic mode 1 with m=1 and m=2, the steepness of solitary wave in-
creases with decreasing Froude number F,. However, for the baroclinic mode 2 with m=2, the
steepness of solitary wave at upper level decreases with decreasing F,. For m =3, the situations
are more complicated. All the results show that effects of Froude number are complex, and are
not as simple as shown in Hukuda's work.

(5) The effects of topography on the solitary waves are also important, its influences are
mainly caused by the southern or northern slope forms of topography, the value of topographic
slope has influence but it is not as large as that of slope form. The northern slope is a more im-
portant factor, and only in the area of northern slope the solitary dipole pattern similar to the
blocking situation may be caused.

(6) The solitary waves for different modes and levels generally have different steepnesses.
The barotropic mode is usually the most obvious, the baroclinic mode 1 is the second, and the
mode 2 is the weakest. The results of calculations also show that the solitary wave located at
mid—level is generally the strongest, and the one located at upper level is the weakest.

APPENDIX
Utilizing the transform (3), from (1) we obtain
W OO By E W = I 5+ O T By F W, =0,
T T By E W 2 )
—%w, + C.v‘)j[vzw} +By +F.W,,, ~2,+¥,_ =0, (A1)

W O > By —F W ¥, )t H ]
X ay

=W O N+ By — P, ¥, )+ H =0,
Y ax

(=23 N~1)
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In order to obtain KdV equation,we make the following transformation:
f=£l/le, y=y/’ (AZ)
where ¢(« 1) is a small parameter of amplitude.
From (A1) we obtain (omitting primes®’ ")
2
Wy 5 (alpx [9 v, ¥,
—4= —+C) ] + +Pv+F (W, —¢ )| =0,
[ af ay ay .74 C“ oy B W,
W, 5 Wy, J '1/ 3y,
UOALEL I L AURS — + =
[af o (sy C)aé =5 52 +ay2 +B+F (b, 2, Y, ) 0, (A3)
oy oy 2y, 2y
N 2 N el N N —
[ of 2y ( ay * C);EJ l:g ol + Qyz thy-F W, —¥, )+ th:l =0
(=23 N-1),
and
Y,
w0 y=0,1. (Ad)
Expand the variable  and the parameter C in power of ¢ as follows
U, Ep) = = 7,0y + e (Ep) + ey @) + -, (AS)
C=C,+eC, +&C,+e,
where u, (y) is basic flow at /th—level. Substituting (A5) into (A3) leads to following approximation equations.
The ¢'—order approximation equations are
all/(]” 92171 o ~ 931,0“) 91//“) 91//“)
| 5 FB+F (u, —u)|[+@w,—C) +F,< ) =0,
E14 ay 2 oloy’ ag 3¢
W 2—
oY, 3w, L
o [ o’ /+1+2u1_“1—1):|
m m m W
_ oy W el oy,
+(u1—CO)[ I,+F( S 11) -0, (A6)
olay’ 4 af af af
n 2
g[/(N qu, _ ah
y: _ayz +B—F (u,_ . —u )+Hd
3,0 M W
_ 8y ay W,
+(“N_Co)l:—lvz - F (—N ——NL):] =0,
olay AN-14 14
and
QW;U =0 =0,1 A7
s O y =0, (A7)

2 .
the e"—order equations are
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gw‘f’[ H, ir o ]+ e, [e y Y (wff) ew‘”)}
: ar B+F (u, —u,) |+ )aéoy Aoz g

(8} (2] (U} ()} )
3 ll/ W, W, W
e LA
QE Iy QY ay
h

QIII(I” OJI//, 9![/“) 9|l]('])
+(?+Cl)[ - +F, (S ‘?)]’

afay
&1 1 @ m @ 6)
Y du _ o 3 l[/ £ oy Y
: [— - ,H+2u,—u,7l)}+(u C)[ +F (h—z ! +L)]
8 Ly ' TN S
30 ) n W m )
Y Y v WY =1 o,
- —(@,-C - [ b E (T T s ) (A8)
al’ af ay’ r ay ay ay
thy 3o 1y (1) )
+(%~ +C,)[9 w'~ +F (h_zsw, +9w#)]
ar aloy” 4 af af 14
2) g 2) ) @)
ay, au, _ dh _ 9'11 (O'I/N 9‘/’~~x)
Yl ——2 4+B-F + - - -y
o [ 9}‘: B r(ul\'—) u ) Hld +(“ c ) 9{9 2 Fr of of
_ 9]]1/:) QI//“) ll) Qw:’) glp:) I
=~ —C)y— X o_p (— )
: aE’ OC g_y' "\ oy ?y
23] 3, [0 [
ay 3 o, W,
+(—"+CI>[ w”, ~-F ( L’—')}
ay oy’ A4 af
(/=23 N-1)
and
[¢i]
ay,
—_—96 =0, y=0,1. (A9)
Itis easy to know that (A6) and (A7) are separable with respect to { and y, and for this purpose, setting
v, = ¥, 0. (=12,+.N) (A10)
and substituting it into (A6) and (A7) gives the eigenvalue problem of \¥';:
B 4y d'u, -
W, ~C| — +F, (¥, ~¥) |+|B—— +F @, —u)|¥ =0
dy” - dv ’
_ a'v, d’u -
(u,—C) i +F M, 2Y, +Y,_) B—T Fu,_ —2u+u_ )|¥ =0, (AlLl)
d’y d*u dh
— N N — _
("A_Co)li dyz _Fr(\PN_\PNAI):IJr[ dyz Sy —u )+H1d_:]‘{‘ =0,
¥,0)=0, v=0,1. (A12)

Equations (A11) describe the meridional structure of Rossby waves including topographic effect. To determine
@(Z). utilizing (A8), then substituting (A10) into the right hand of (A8), and omitting the cases of u;= C,, from (Al1) we

obtain
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3(11(12) dzljl B B 2 d](z) gwtzl) alp(ll)
. @, —u,) |+@,~C,) +F,( - )
o dy” gfay L1 3¢
2
d(D do d ﬂ—dz IR
—C ¥ ST Yo Y _ }
( ) é 1 ge dy[ “-C,
2
——L1 4 F W, —u)
_C \P Q ﬂ dyZ r 1 2
T Z-cC, *

2} 21— ) [W) (i) 2y
Iﬁ: du, _ 3y, o, W, W,
P TR ST [+ @ -0 E+Fr( e )

22—
Jo o 4 ﬂ——d Fa,  —2u+iu,)
(u—C)‘P—+‘P<I’dd[ d - ] (A13)
dé ¢ u —Cg
2
{
dd B dyz Fr(ull 2u +ul+l)
ol Zhd = ,
! 'dc[ Z-C, }

[¢) p— 3@ ) 2}
911/ d u, -~ _ dh _ E) WN W, QIII‘V_]
Y [ﬂ— o TE G mu )T H [ T ) oy’ —F,(?—T>

21—‘- h
d
3 B- zN _Fr(uN 1 uN)+Hla—
- oy L2 do d dy y
0 vPag d i -c,
u _ _ dh
4o dy: Fr(uN—I—uN)+HI(E

“C¥yvar i —C ’

N o

The condition for the existence of solutions of (A13) is that the amplitude @ () satisfies the KdV equation (4)
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