首页 | 官方网站   微博 | 高级检索  
     

高温高压下石英方解石断层带的摩擦滑动性状
引用本文:马胜利,马瑾.高温高压下石英方解石断层带的摩擦滑动性状[J].地震学报,1988,10(1):90-97.
作者姓名:马胜利  马瑾
作者单位:国家地震局地质研究所
摘    要:在不同的温度、压力条件下进行了含石英和方解石断层泥标本的摩擦实验。结果表明,石英断层带的摩擦强度对压力的响应直到400℃都很明显,对温度的响应在高温(高于400℃)时才明显;方解石断层带的摩擦强度对温度很敏感,对围压的响应只在低温(200℃)时才明显;随温度升高,石英和方解石断层带均由粘滑转变为稳滑,但前者的转换界限在400℃到500℃之间,而后者在200℃到300℃之间。显微观察表明,上述差异归因于其具体变形机制的差别。 

关 键 词:断层泥    三轴实验    摩擦强度    粘滑    稳滑    变形机制

FRICTIONAL BEHAVIOR OF QUARTZ AND CALCITE FAULT ZONES AT ELEVATED TEMPERATURES AND PRESSURES
Affiliation:Institute of Geology, Stale Seismological Bureau
Abstract:The strength of samples with quartz and calcite gouges was measured at elevated temperatures and confining pressures. The strength of quartz fault zone was very sensitive to pressure up to 400℃, and its response to temperature was outstanding only at high temperature ( > 400℃). The strength of calcite fault zone was very sensitive to temperature, while the effect of pressure could only be seen when the temperature was lower than 200℃. As temperature increased, the sliding mode for both quartz and calcite fault zones changed from stick-slip to stable sliding. The transition for quartz zone took place between 400℃ and 500℃, but it took place between 200℃ and 300℃ for calcite fault zone.The microstructure of samples deformed under different condition was studied. It indicated that the deformation of quartz fault zone was controlled by cataclastic flow up to 400℃, and by intracrystallization and recrystallization when the temperature was higher than 400℃. The predominant deformation mechanism of calcite fault zone changed from cataclastic folw to intracrystal gliding, and then to syntectonic recrystallization as temperature increased from 200℃ to 600℃. The first transition took place between 200℃ and 300℃, and the second between 400℃ and 600℃. Therefore, it is clear that the difference in mechanical behavior, dis-cribed above, resulted from the difference in deformation mechanism. The stick-slip may be related to cataclastic flow for both quartz and calcite fault zones. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《地震学报》浏览原始摘要信息
点击此处可从《地震学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号