东海—图们江水中 Zn, Cd, Pb, Cu 的 形式分析^{*}

张首临 李泽林

(中国科学院海洋研究所,青岛 266071)

提要 用防吸附物理涂汞电极反向极谱进行了东海至图们江水中 Zn,Cd,Pb,Cu (1991 年 5-6 月)的形式分析研究。结果表明,该 4 种元素不稳定态的平均浓度分别为 5.7,0.060, 0.035, 0.62µg/L, 分布较为均匀。 该结果证实了痕量金属离子(自由离子及不稳定络离子)的均匀分布规律。有机结合态 Zn,Pb,Cu 和颗粒态的 Zn,Cu 的较高含量,位于长江口及东海水中。

关键词 东海 图们江水 锌 镉 铅 铜 形式分析

天然水中 Zn, Cd, Pb, Cu 的形式分析,特别是离子的测定,已用防吸附物理涂汞电极 系统作过无试剂反向极谱研究(顾宏堪等, 1973; 1980; 1982),揭示了一些重要海洋地球 化学规律(顾宏堪等, 1978; 1983)。本文进行了图们江水中 Zn, Cd, Pb, Cu 的形式分析 研究。

1 样品及分析

1.1 样品 1991 年 5—6 月在标定站位(见图1),用聚乙烯桶人工采样。东海至图们江 口取表层水样,图们江水中取表、中、底 3 层水样,均置于长期经陈海水浸泡的聚乙烯瓶 中,不加任何试剂,低温保存。

1.2 分析方法 水样带回实验室后,参照孙秉一等(1980)的方法进行处理。将样品充分摇匀后,通过 $0.45 \mu m$ (硝化纤维+醋酸纤维素)微孔滤膜抽滤,滤液不加任何试剂,取 10ml 直接用反向极谱测定得值*A*,为不稳定态;取滤液 50ml 加 H₂O₂ 经紫外线 (GGZ 高 压紫外线汞灯,500W) 照射 2h 后(蒸发损失的水样,用已知浓度的标准海水添补),取 10ml 测得值 *B*, *B 减 A* 得有机结合态;将另一份经紫外线照射的水样调 pH 至 4.7,取 ml 测得值 *C*, *C* 减 *B* 得无机弱结合态;取经 $0.45 \mu m$ 滤膜的滤液 50ml 加浓盐酸一滴煮沸后(样品不准溅出)用已知浓度的标准海水稀释至 50ml,测得值 *D*, *D* 减*C* 得无机强结合态;将悬浮体(带膜)于马福炉(400℃)灰化加浓盐酸溶解,用陈海水稀释,调 pH 至 4.5 后,进行反向极谱测定,其值扣除空白,即得颗粒态含量。

各种处理后的水样均用防吸附物理涂汞电极及 PAR 384 微分脉冲极谱分析仪(美国 Princeton Applied Research 公司),作微分脉冲阳极溶出测定。 用标准对比进行定量。 用酸度计调节 pH。

^{*} 中国科学院海洋研究所调查研究报告第 2196 号。国家自然科学基金资助项目,48970275 号。 收稿日期: 1992 年 1 月 15 日,接受日期: 1993 年 2 月 16 日。

表1	东海至图们江水中	Zn	的各态含量和百分比
----	----------	----	-----------

Tab. 1 The content and percentange of Zn from East China Sea to Tumen River

		不稳	皇定态 无机弱结合态		无机强约	无机强结合态")				颗粒态')		
晒亏	层伏	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	心里
1	表	4.2	13.5	1.4	4.5	5.5	17.7	7.9	25.5	12	38.7	31.0
2	表	6.2	16.9	1.0	2.7	8.8	24.0	4.6	12.6	16	43.7	36.6
3	表	6.4	15.9	0.80	2.1	6.3	15.6	3.8	9.4	23	57.1	40.3
4	表	5.8	19.1	1.5	5.0	5.6	18.6	6.4	21.1	11	36.3	30.3
5	表	5.6	25.7	1.3	6.0	4.9	22.5	4.0	18.3	6	27.5	21.8
6	表	6.8	24.2	0.70	2.4	1.8	6.4	2.8	10.0	16	56.9	28.1
7	表	5.4	21.9	1.1	4.5	5.3	21.5	1.9	7.7	11	44.5	24.7
8	表	5.5	27.8	0.30	1.5	2.3	11.6	2.7	13.6	9	45.5	19.8
9	表	5.3	25.6	0.10	0.6	2.6	12.6	0.70	3.4	12	58.0	20.7
10	表	5.7	26.3	0.60	2.8	3.2	14.7	6.5	30.0	5.7	26.3	21.7
	中	6.4	35.0	0.80	4.4	2.5	13.7	3.1	16.9	5.5	30.1	18.3
	底	6.1	27.5	0.80	3.6	4.2	18.9	4.2	18.9	6.9	31.1	22.2
11	表	8.4	37.3	0.70	3.2	2.7	12.0	4.9	21.7	5.8	25.7	22.5
	中	3.8	25.7	0.90	6.1	2.3	15.5	3.2	21.6	4.6	31.1	14.8
	底	5.0	22.9	2.2	10.1	3.8	17.4	5.5	25.2	5.3	24.3	21.8
12	表	7.5	33.3	0.70	3.1	2.2	9.8	5.8	25.8	6.3	28.0	22.5
	中	3.2	21.3	1.0	6.7	1.8	12.0	3.7	24.7	5.3	35.3	15.0
	底	4.8	19.7	3.1	12.7	4.1	16.8	5.7	23.4	6.7	27.5	24.4
13	表	6.4	32.0	0.50	2.5	2.5	12.5	5.0	25.0	5.6	28.0	20.0
	中	5.1	24.6	1.8	8.7	2.9	14.0	4.3	20.8	6.6	31.9	20.7
	底	6.0	24.1	3.7	14.9	4.6	18.5	4.1	16.5	6.5	26.1	24.9
14	表	5.0	20.7	0.60	2.5	3.0	12.4	4.6	19.0	11	45.5	24.2
	中	4.7	19.1	0.20	0.8	3.6	14.6	3.1	12.6	13	52.8	24.6
	底	7.1	20.4	3.3	9.5	5.3	15.2	12.0	34.5	7.1	20.4	34.8
平均		5.7	23.4	1.2	5.0	3.8	15.6	4.6	18.9	9.1	37.3	24.4

1) 空白已扣除。表 2、表 3、表 4 同。

2 结果与讨论

2.1 水中 Zn, Cd, Pb, Cu 的形式分析结果 东海至图们江水中的 Zn, Cd, Pb, Cu 的形式分析结果分别由表 1-表 4 列出。

2.2 讨论 由表 1一表 4 可以看出,东海至日本海及图们江表层水中 Zn, Cd, Pb, Cu

表 2 东海至图们江水中 Cd 的各态含量和百分比

Tab. 2 The content and percentange of Cd from East China Sea to Tumen River

사의 명상		不稳定态		无机弱结合态		无机强结合态"		有机结合态		颗粒态1)		~ 旦
- 西方	层伏	$(\mu g/L)$	(%)	尽重								
1	表	0.080	15.7	0.030	5.9	0.15	29.4	0.090	17.6	0.16	31.4	0.51
2	表	0.060	9.4	0.020	3.1	0.29	45.3	0.070	10.9	0.20	31.3	0.64
3	表	0.060	7.1	0.020	2.4	0.64	76.2	0.070	8.3	0.050	6. 0	0.84
4	表	0.040	19.0	0.040	19.0			0.080	38.1	0.050	23.8	0.21
5	表	0.040	6.0	0.030	4.5	0.45	67.2	0.060	9.0	0.090	13.4	0.67
6	表	0.050	9.4	0.15	28.3	0.11	20.8	0.040	7.5	0.18	34.0	0.53
7	表	0.050	11.9	0.17	40.5	0.10	23.8	0.040	9.5	0.060	14.3	0.42
8	表	0.080	13.6	0.060	10.2	0.35	59.3	0.040	6.8	0.060	10.2	0.59
9	表	0.050	15.6	0.080	25.0	0.090	28.1	0.030	9.4	0.070	21.9	0.32
10	表	0.080	25.0	0.094	29.4	0.089	27.8	0.020	6.3	0.040	12.5	0.32
	中	0.080	21.6	0.099	26.8	0.126	34.1	0.020	5.4	0.040	10.8	0.37
	底	0.080	21.6	0.088	23.8	0.123	33.2	0.040	10.8	0.040	10.8	0.37
11	表	0.060	18.2	0.089	27.0	0.119	36.1	0.020	6.1	0.040	12.1	0.33
	中	0.040	11.8	0.090	26.5	0.133	39.1	0.030	8.8	0.050	14.7	0.34
	底	0.060	14.3	0.088	21.0	0.135	32.1	0.040	9.5	0.10	23.8	0.42
12	表	0.060	18.2	0.085	25.8	0.124	37.6	0.020	6.1	0.040	12.1	0.33
	中	0.050	15.2	0.089	27.0	0.14	42.4	0.020	6.1	0.030	9.1	0.33
	底	0.060	17.1	0.081	23.1	0.141	40.3	0.030	8.6	0.040	11.4	0.35
13	表	0.060	15.4	0.070	17.9	0.158	40.5	0.020	5.1	0.080	20.5	0.39
	中	0.080	17.0	0.082	17.4	0.21	44.7	0.030	6.4	0.070	14.9	0.47
	底	0.080	16.0	0.055	11.0	0.205	41.0	0.040	8.0	0.12	24.0	0.50
14	表	0.080	14.0	0.069	12.1	0.292	51.2	0.030	5.3	0.10	17.5	0.57
	中	0.080	14.5	0.076	13.8	0.279	50.7	0.030	5.5	0.080	14.5	0.55
	底	0.080	15.1	0.036	6.8	0.266	50.2	0.050	9.4	0.10	18.9	0.53
		0.060	13.3	0.070	15.5	0.205	45.5	0.040	8.9	0.080	17.8	0.45

1) 空白已扣除。

的不稳定态分布较为均匀,与顾宏堪等(1978)、张首临等(1986)报道的中国近海海水中几 种微量金属离子的分布研究结果相一致。无机弱结合态和无机强结合态除了 Pb 的无机 弱结合态在东海海水中偏高以外,其他 Zn,Cd,Pb,Cu 的分布也较均匀。 有机结合态 和颗粒态的 Zn,Cu 在长江口、东海的浓度分布较图们江表层的高,有机结合态的 Pb 分布

表 3 东海至图们江水中 Pb 的各态含量和百分比

Tab. 3 The Content and percentange of Pb from East China Sea to Tumen River

<u> </u>		不稳	定态	无机弱结合态		无机强结合态り		有机结合态		颗粒态い		山風
	层伏	$(\mu g/L)$	(%)	里心								
ľ	表	0.022	8.8	0.022	8.8	0.050	20.0	0.13	52.0	0.026	10.4	0.250
2	表	0.040	23.8	0.024	14.3	0.080	47.6			0.024	14.3	0.168
3	表	0.060	21.0	0.028	9.8	0.080	28.0	0.071	24.8	0.047	16.4	0.286
4	表	0.065	31.6	0.016	7.8	0.040	19.4	0.054	26.2	0.031	14.8	0.206
5	表	0.050	21.7	0.032	13.9	0.029	12.6	0.094	40.9	0.025	10.9	0.230
6	表	0.025	15.5	0.025	15.5	0.051	31.7	0.039	24.2	0.018	11.2	0.161
7	表	0.027	17.1	0.024	15.2	0.040	25.3	0.046	29.1	0.021	13.3	0.158
8	表	0.047	28.8	0.033	20.2	0.038	23.3	0.024	14.7	0.021	12.9	0.163
9	表	0.052	24.1	0.039	18.1	0.060	27.8	0.025	11.6	0.040	18.5	0.216
10	表	0.033	15.8	0.0050	2.4	0.035	16.7	0.116	55.5	0.020	9.6	0.209
	中	0.030	20.1	0.014	9.4	0.020	13.4	0.055	36.9	0.030	20.1	0.149
	底	0.017	7.0	0.073	29.9	0.095	38.9	0.039	16.0	0.020	8.2	0.244
11	表	0.033	18.3	0.0040	2.2	0.032	17.8	0.091	50.6	0.020	11 .1	0.180
	中	0.017	11.0	0.012	7.8	0.044	28.6	0.051	33.1	0.030	19.5	0.154
	底	0.026	15.1	0.014	8.1	0.050	29.1	0.052	30.2	0.030	17.4	0.172
12	表	0.024	13.7	0.005	2.9	0.034	19.4	0.092	52.6	0.020	11.4	0.175
	中	0.012	8.6	0.012	8.6	0.045	32.4	0.060	43.2	0.010	7.2	0.139
	底	0.025	16.1	0.015	9.7	0.051	32.9	0.044	28.4	0.020	12.9	0.155
13	表	0.038	18.5	0.012	5.9	0.032	15.6	0.093	45.4	0.030	14.6	0.205
	中	0.050	30.9	0.011	6.8	0.040	24.7	0.031	19.1	0.030	18.5	0.162
	底	0.039	22.3	0.028	16.0	0.035	20.0	0.023	13.1	0.050	28.6	0.175
14	表	0.041	18.1	0.016	7.1	0.045	19.9	0.089	39.4	0.035	15.5	0.226
	中	0.033	15.1	0.017	7.8	0.064	29.2	0.075	34.2	0.030	13.7	0.219
	底	0.028	15.2	0.036	19.6	0.054	29.3	0.026	14.1	0.040	21.7	0.184
—— 平均		0.035	18.3	0.022	11.5	0.048	25.1	0.062	13.6	0.028	14.7	0.191

1) 空白已扣除。

与其它形式的浓度分布相比较高。这些均与取样站位离岸较近,细颗粒较多有关。由于 有机物的含量多少与沉积物的粒径粗细变化有密切关系,生物遗骸的软组织及其排泄物 等有机组份在沉积物中多以有机质形式出现,多分布在内陆架的细沉积物中,因此有机结 合态及颗粒态浓度分布结果与 Niino 等(1961)及秦蕴珊等(1982)所述悬浮体的高含量 位于大陆架沿岸一带相一致。

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 4 东海至图们江水中 Cu的各态含量和百分比

Tab. 4 The content and percentange of Cu from East China Sea to Tumen River

此早	巨次	不稳定态		无机弱结合态		无机强结合态"		有机结合态		颗粒态り		台岳
		$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	$(\mu g/L)$	(%)	
1	表	0 .64	30.5	0.12	5.7	0.45	21.4	0.38	18.1	0.51	24.3	2.10
2	表	0.72	21.6	0.13	3.9	0.58	17.4	0.83	24.9	1.07	32.1	3.33
3	表	0.89	30.7	0.21	7.2	0.50	17.2	0.70	24.1	0.60	20.7	2.90
4	表	0.72	23.2	0.24	7.7	0.56	18.0	0.75	24.1	0.84	27.0	3.11
5	表	0.75	30.3	0.33	13.4	0.25	10.1	0,45	18.2	0.69	27.9	2.47
6	表	0.67	. 25.4	0.45	17.0	0.29	11.0	0.36	13.6	0.87	33.0	2.64
7	表	0.64	28.6	0.19	8.5	0.45	20.1	0.41	18.3	0.55	24.6	2.24
8	表	0.74	37.9	0.14	7.2	0.24	12.3	0.39	20.0	0.44	22.6	1.95
9	表	0.69	35.8	0.21	10.9	0.39	20.2	0.23	11.9	0.41	21.2	1.93
10	表	0.53	25.1	0.21	10.0	0.27	12.8	0.28	13.3	0.82	38.9	2.11
	中	0.45	21.8	0.15	7.3	0.30	14.6	0.30	14.6	0.86	41.7	2.06
	底	0.32	12.6	0.04	1.6	0.64	25.2	0.74	29.1	0.80	31.5	2.54
11	表	0.56	31.5	0.28	15.7	0.30	16.9	0.26	14.6	0.38	21.3	1.78
	中	0.53	23.5	0.22	9.7	0.45	19.9	0.32	14.2	0.74	32.7	2.26
	底	0.63	29.2	0.04	1.9	0.66	30.6	0.12	5.6	0.71	32.9	2.16
12	表	0.55	26.6	0.32	15.5	0.33	15.9	0.26	12.6	0.61	29.5	2.07
	中	0.57	27.9	0.25	12.3	0.45	22.1	0.24	11.8	0.53	26.0	2.04
	底	0.58	22.5	0.020	0.80	0.75	29.1	0.15	5.8	1.08	41.9	2.58
13	表	0.59	29.9	0.27	13.7	0.30	15.2	0.20	10.2	0.61	31.0	1.97
	中	0.57	28.8	0.22	11.1	0.30	15.2	0.16	8.1	0.73	36.9	1.98
	底	0.63	28.5	0.04	1.8	0.71	32.1	0.09	4.1	0.74	33.5	2.21
14	表	0.57	30.0	0.26	13.7	0.33	17.4	0.24	12.6	0.50	26.3	1.90
	中	0.62	30.4	0.18	8.8	0.30	14.7	0.14	6.9	0.80	39.2	2.04
	底	0.65	22.3	0.12	4.1	0.96	33.0	0.08	2.7	1.10	37.8	2.91
 平均		0.62	27.0	0.19	8.3	0.45	16.6	0.34	14.8	0.71	31.0	2.30

1) 空白已扣除。

图 1 采样站位

Fig. 1 Sampling stations from East China Sea to Tumen River in 1991

参考文献

孙秉一等,1980,胶州湾东北部海水中铅的形态及其分布,山东海洋学院学报,10(1): 79-89。

张首临等,1986,西北太平洋表层海水中 Zn, Cd, Pb, Cu 的形态分布,海洋与湖沼论文集,科学出版社(北京), 101-107。

- 顾宏堪等,1973,物理涂汞电极单池示差反向极谱,分析化学,1(1): 15-22。
- 顾宏堪等,1978,中国近海海水中的几种微量金属离子的分布研究,海洋科学集刊,13:1-7。
- 顾宏堪等,1983,关于天然水中痕量金属离子的均匀分布,科学通报,17:1047—1049。
- 顾宏堪等,1980,电极防吸附膜研究,化学学报,38(4): 381-386。

秦蕴珊等,1982,东海大陆架沉积物分布特征的初步探讨,黄东海地质,科学出版社(北京), 39-51。

Gu Hongkan, et al., 1982, Anti-adsorption physically coated mercury film electrode for inverse polarography, Oceanol. Limnol. Sin., 1(1): 76-81.

Niino, H. and Emery, K.O., 1961, Sediments of shallow portion of East China Sea and South China Sea, Bull. Geolog. Soci. Amer., 72(5): 731-762.

THE SPECIATION OF Zn, Cd, Pb, Cu FROM THE EAST CHINA SEA TO TUMEN RIVER*

Zhang Shoulin, Li Zelin

(Institute of Oceanology, Academia Sinica, Qingdao 266071)

Abstract

This paper presents a study of Zn, Cd, Pb, Cu (May—June 1991) speciation in Tumen River water using anti-adsorption physicall-coated mercury film elecotrode inverse polarography. The results show that: for Zn, Cd, Pb, Cu, the labile state were 3.2—8.4, 0.040—0.080, 0.017—0.065, 0.32—0.89 μ g/L respectively; the inorganic weak bound forms were 0.2—3.7, 0.020—0.17, 0.004—0.073, 0.02—0.45 μ g/L respectively; the inorganic strong bound forms were 1.8—8.8, 0.089—0.64, 0.020—0.095, 0.24—0.96 μ g/L respectively; the organic bound forms were 0.70—12.0, 0.020—0.090, 0.023—0.13, 0.080—0.83 μ g/L respectively; the particulate forms were 4.6—23, 0.030—0.20, 0.010—0.050, 0.38—1.10 μ g/L respectively; and the Σ Zn, Σ Cd, Σ Pb, Σ Cu were 14.8—40.3, 0.21—0.84, 0.139—0.286, 1.78—3.33 μ g/L respectively.

The results showing that the labile state of Zn, Cd, Pb and Cu were homogeneously distributed, coincided with those from a study by Cu et al., and proved the general rule of homogeneous distribution of trace metal ions in natural water. The higher contents of organic forms of Zn, Pb and Cu, and particulate forms of Zn, Cu are in the Changjiang River and the East China Sea.

Key words East China Sea Tumen River Zinc Gadmium Lead Copper Speciation

615

^{*} Contribution No. 2196 from the Institute of Oceanology, Academia Sinica.