藏南桑单林地区晚白垩世一始新世砂岩物源区分析

王建刚, 胡修棉, 黄志诚

南京大学地球科学系,210093

内容提要:西藏南部桑单林地区出露一套晚白垩世一始新世深水沉积的地层,下部为晚白垩世以石英砂岩和 粉砂质页岩为主的桑单林组,上部为始新世含长石岩屑砂岩、硅质岩和硅质页岩的者雅组,由于断层错断,二者之 间的古新世地层缺失。砂岩的岩石学分析表明,桑单林组石英砂岩的成分成熟度和结构成熟度均较高,杂基含量 少,为硅质胶结;者雅组长石岩屑砂岩中,不稳定组分明显增加,杂基含量高,主要为泥质胶结。运用重矿物组合以 及全岩主量元素、微量元素和稀土元素组成对砂岩的物源区分析表明,桑单林组砂岩形成于稳定的被动大陆边缘, 碎屑物质来源于印度克拉通内部,而者雅组砂岩中存在明显的火成岩物质的输入,这些火山物质只可能来自于沉 积盆地北部。桑单林组和者雅组砂岩的物源区的明显变化,反映了古新世末期一早始新始的一次碰撞事件:印度 大陆与亚洲大陆的碰撞或者印度大陆与洋内岛弧的碰撞。

关键词:藏南;始新世;砂岩;物源区分析;碰撞事件

新特提斯洋的关闭,印度大陆与亚洲大陆碰撞 以及青藏高原的隆升,是中生代末期以来地球上最 重大的地质事件之一(王成善等,2003)。因此,对特 提斯洋演化过程和喜马拉雅造山带隆升历史的研 究,具有重要的地质意义。长期以来,尽管在该区的 研究中取得了大量重要的成果,但是对于制约这一 地质事件的基本问题,如印度一亚洲大陆碰撞的事 件、洋壳的俯冲模式等尚没有一致的认识(Achache et al., 1984; Besse et al., 1984; Willems, 1993; Beck et al., 1995; Patzelt et al., 1996; Rowley, 1996; Hodges, 2000; Yin et al., 2000)。这其中 一个重要的原因就是在碰撞造山的过程中,大量的 地质实体俯冲消亡、大量直观的地质现象被错综复 杂的构造运动破坏,使得对古地理面貌的模拟和恢 复显得尤为困难。

从活动构造区域剥蚀的碎屑物在邻近盆地沉积 所形成的沉积档案,能够有效地反映后陆的构造作 用,尤其是物源区本身因为后期变质变形、构造运动 和风化剥蚀所掩盖的构造地质信息(Najman, 2006)。在特提斯喜马拉雅地区,出露大量的碎屑沉 积岩,深入研究这些沉积记录,对进一步了解印度一 亚洲大陆碰撞、特提斯洋的演化和喜马拉雅造山带 的形成过程具有重要意义。本文对西藏萨嘎地区桑 单林剖面晚白垩世一始新世的地层进行了描述,并 对其中的砂岩进行了岩石学和地球化学的研究,系 统讨论了砂岩的物源区问题,试图对特提斯洋的演 化提供新的证据。

1 区域地质背景

喜马拉雅造山带由一系列由北向南推覆的地质 体构成(Ratschbacher, 1993; Searle et al., 1997) (图 1)。雅鲁藏布江缝合带是印度大陆与亚洲大陆 碰撞的遗迹,它近东西向呈带状分布,主要包括沉积 岩、蛇绿混杂岩和蛇绿岩套的碎片,雅鲁藏布江缝合 带混杂岩可进一步划分为北部的蛇绿质混杂岩带和 南部的泥砂质混杂岩带(Hodges, 2000; Yin et al., 2000)。缝合带北侧是拉萨地体,二者之间为大反向 逆冲断层(GCT),在特提斯洋壳向北俯冲时,拉萨 地体南部发生了大量的岩浆活动,所形成的火成岩 称为冈底斯岛弧,包括白垩纪一早第三纪的钙碱性 花岗岩(e.g. Debon et al., 1986)和第三系(约 68 ~43Ma)非海相的林子宗组火山岩(e.g. Miller et al., 2000),同时,在冈底斯岛弧南侧形成了大量的 弧前盆地复理石沉积(王成善等, 1999)。缝合带南

收稿日期:2007-08-28;改回日期:2007-11-02;责任编辑:郝梓国。

注:本文为国家重点基础研究发展规划项目(编号 2006CB701402)和国家自然科学基金项目(编号 40302017)资助的成果。

作者简介:王建刚,男,1984年生。南京大学在读硕士研究生,沉积学专业。Email:gang.0721@163.com。通讯作者:胡修棉,男,1974年 生,副教授。通讯地址:210093,南京大学地球科学系;联系电话:025-8359 3002;传真:025-8368 6016;Email:huxm@nju.edu.cn。

侧为特提斯喜马拉雅,它与缝合带之间由仲巴一江 改逆冲断层(ZGT)分隔,特提斯喜马拉雅由位于印 度大陆北缘的古生代一早第三纪沉积系列组成(e. g. Gaetani et al., 1991),它又可分为南北两个亚 带,南亚带为稳定的大陆边缘陆棚沉积,以碳酸盐岩 和碎屑岩为主(万晓樵等, 2000; Jadoul et al., 1998);北亚带为大陆斜坡沉积,岩石主要为硅质碎 屑岩、砂岩、页岩和灰岩等(Jadoul et al., 1998)。 再向南属于高喜马拉雅地区,它由印度板块的变质 岩所组成,其上部与特提斯喜马拉雅之间为藏南拆 离系(STDS)(Pecher, 1989; Hodges et al., 1996)。低喜马拉雅位于高喜马拉雅南侧,二者之间 为主中央逆冲断层(MCT),低喜马拉雅由未变质或 浅变质的印度地壳组成,时代主要为前寒武纪至古

生代(Tewari 1993; Hodges, 2000)。

2 岩石地层

桑单林剖面位于藏南吉隆县北部桑单林新村西 北约1km处。该剖面由中国科学院西藏科学考察 队于1966年最早发现(尹集祥等,1974),地层呈巨 大的外来岩块位于雅鲁藏布江缝合带泥砂质混杂岩 之中,尹集祥(1988)把这套地层归为三叠系吉隆群, 盛金章(1976)和李红生(2000)分别对地层硅质岩中 的放射虫进行了鉴定和描述,之后,丁林(丁林, 2003; Ding et al.,2005)对桑单林剖面进行了重新 研究,发现了硅质岩中的古新世放射虫组合,并新建 了折巴群,包括桑单林组和者雅组。最近,李亚林等 (2007)合同笔者一起重新实测了该剖面,在剖面中

图 1 研究区大地构造略图(据潘桂棠, 2004)

Fig. 1 Simplified tectonic map of the studied erea (Modified after Pan et al., 2004)

GIR—冈底斯岛弧火山岩;FBS—弧前盆地沉积系列;Oph—蛇绿岩碎片;TOM—蛇绿混杂岩;TSM—泥砂质混杂岩;NTHS—特提斯喜马拉 雅北带;STHS—特提斯喜马拉雅南带;GHM—高喜马拉雅变质岩带;LHS—低喜马拉雅变质沉积岩带;gr—淡色花岗岩。GT—冈底斯逆 冲断层;GCT—大反向逆冲断层;ZGT—仲巴-江孜逆冲断层;GDT—岗巴-定日逆冲断层;STDZ—藏南拆离系;MCT—主中央逆冲断层。 ★一剖面位置

GIR—Gangdese Igneous Rocks; FBS—Foreland Basin Series; Oph—Ophiolite; TOM—Tectonic Ophiolite Melange; TSM—Tectonic Sedimentary Melange; NTHS—Northern Tethys Himalaya Sedimentary Rocks; STHS—Southern Tethys Himalaya Sedimentary Rocks; GHM—Great Hinalayan Metamorphic Rocks; LHS—Lesser Himalaya Metasedimentary Rocks; gr—Leucogranite。GT—Gangdese Thrust; GCT—Great Counter Thrust; ZGT—Zhongba-Gyangze Thrust; GDT—Gamba-Tingri Thrust; STDZ—South Tibetan Detachment Zone; MCT—Main Central Thrust。★—Position of Sangdanlin Section 发现了晚白垩世和始新世早期的放射虫。剖面保存 相对完整,整套地层虽为构造岩块,但岩块内部层序 清楚,地层倾向为北北东,倾角约 56°。笔者于 2005 年和 2006 年先后两次对桑单林剖面进行了实测和 系统描述。岩石地层单位沿用丁林(2003)建立的桑 单林组和者雅组(图 2)。

桑单林组下部为中厚层灰白色石英砂岩夹灰绿 色粉砂质页岩,砂岩与页岩突变接触,砂岩底部见重 荷模,顶面发育黄铁矿晶体。上部为巨厚层石英砂 岩夹黄绿色粉砂岩、紫红色硅质岩和硅质页岩。砂 岩层中石英脉发育,具球状风化,在砂岩层的底面发 育重荷模,部分砂岩中见平行层理、交错层理和虫迹 等构造。最近,李亚林(2007)等在第11层的硅质岩 中,发现了放射虫组合:Spongosaturninus sp. cf. S. ellipticus Campbell & Clark; Pseudoaulophacus riedeli Pessagno; Orbiculiforma sacramentoensis Pessagno and Patellula planoconvexa(Pessagno), 指示桑单林组的时代为晚白垩世。

者雅组的岩性组合为长石岩屑砂岩夹硅质岩和 硅质页岩,砂岩为青灰色,中厚层状,砂岩的粒度有 向上变大的趋势,在顶部的砂岩层中有砾石出现,砂 岩层的底部发育重荷模,局部砂岩层中见滑塌构造。 者雅组中的硅质岩和硅质页岩多为灰绿色,少许为 紫红色。16层硅质岩中的放射虫组合: Amphisphaera coronata (Ehrenberg); Buryella hannae Bak & Barwicz-Piskorz; Buryella clinata Foreman; Buryella tetradica Foreman; Calocycloma ampulla (Ehrenberg); Lamptonium fabaeforme constrictum Riedel and Sanfilippo; Lamptonium pennatum Foreman; Lithomespilus coronatus Squinabol; Lamptonium (?) colymbus Foreman 以 及 Amphisphaera minor minor (Clark 8. Campbell); Lamptonium sanfilippoae Foreman; Lithelius minor Jorgensen 等(李亚林等,2007)显示 其时代为早始新世。由于没有更多的化石对地层的 时代进行约束,我们暂且将者雅组的时代定为始新 世。桑单林组和者雅组之间为断层接触,之间的古 新世地层缺失。

3 样品分析测试方法

本次工作共磨制并鉴定了砂岩薄片四十余片, 并对其中成岩作用较弱的 34 片用 Dickinson 计点 法进行了碎屑颗粒统计,所统计的颗粒均大于 0. 03mm,每个样品统计颗粒数不少于 300 颗(表 1)。 另外,我们还对桑单林剖面不同层位的 15 件砂岩样 品进行了重矿物提取和分析。首先,将砂岩样品粉 碎磨细,使其颗粒小于 60 目,经多次水洗和酒精细 淘分离重矿物。之后,通过磁选、电磁选,将重矿物 分离成磁性矿物、电磁性矿物和无磁性矿物三部分, 并筛取 120 目~250 目的碎屑重矿物进行鉴定和颗 粒统计,每个样品统计颗粒大于 300 颗(表 2)。

地球化学分析样品共 8 件,首先,将新鲜且具代 表性的样品小块用蒸馏水多次清洗,烘干,然后将样 品研磨成 200 目以下的粉末以备用。主量元素在南 京大学现代分析测试中心用日本岛津公司 VF320 单道萤光光谱仪(XRF)测定,分析精度优于 5%。 微量元素由南京大学地质流体与成矿作用国家重点 实验室在 FiniganMAT 公司的 Element 2 型 HR-ICP-MS 仪器上测得,测试方法见高剑峰等(2003), 分析精度总体优于 10%。

4 砂岩的物源区分析

4.1 砂岩的岩石学特征

根据薄片鉴定的结果,可以将砂岩分为两种类型:石英砂岩和长石岩屑砂岩。石英砂岩主要位于 桑单林组,另在者雅组底部也有少许石英砂岩层出 现。石英砂岩手标本为灰色或灰白色,风化显浅黄 色。岩石具不等粒砂状结构,碎屑颗粒中单晶石英 含量大于 95%,另含少量多晶石英(3%~5%),白 云母、重矿物以及长石等极少见。石英颗粒粒径 0. 05~1mm,磨圆度较好,为次棱角状至圆状,碎屑物 的分选性稍差。砂岩中具石英脉,且局部有铁质浸 染现象,岩石杂基含量极少,为硅质胶结。

长石岩屑砂岩出现在者雅组,手标本为青灰色。 在碎屑组分中,石英含量相对较少,在 51%~64% 之间变化,其中单晶石英占大多数,多晶石英常见; 长石含量 12%~19%,以基性斜长石为主,成岩变 化较弱,双晶明显,而钾长石出现严重的绢云母化或 泥化,难以辨认;岩屑含量 23%~30%,包括玄武岩 岩屑、安山岩岩屑、泥质岩岩屑等,大部分火成岩岩 屑发生了不同程度的绿泥石化,而泥质岩岩屑则具 轻微的变质作用。砂岩杂基含量高,且碎屑颗粒分 选性差,磨圆度较差,主要为泥质胶结,为典型的浊 流沉积杂砂岩。

本文新引进了一个参数来反映砂岩成分成熟度 的高低,即:不稳定碎屑比率=(岩屑数量+长石数 量+多晶石英)/碎屑颗粒总数。岩石的成分成熟度 越高,岩屑、长石、多晶石英等不稳定组分就越少,不

注: 不稳定碎屑比率=(岩屑数量+长石数量+多晶石英)/碎屑颗粒总数。

稳定碎屑比率就越低,否则反之。从图2可以看出, 下部桑单林组的不稳定碎屑比率约为5%,而上部 者雅组的不稳定碎屑比率则高达40%,这说明者雅 组砂岩的成分成熟度明显偏低。影响成分成熟度的 因素很多,但对于同一沉积盆地的碎屑岩来说,物源 区的变化可能是导致这一结果的主要原因。

在 QmFLt 构造背景判别图解(Dickinson, 1985)中(图 3), 桑单林组石英砂岩位于"克拉通内 部"区域,这说明其形成于印度大陆北缘稳定的被 动大陆边缘,碎屑物主要来自印度克拉通内部。者 雅组的样品主要投点于"再旋回造山带"和"混和 区",说明物源区为再旋回造山带和活动岛弧。者雅 组底部少数几个样品位于"克拉通内部",显示了该 组沉积早期物源的双重性,即可能同时接收了来自 不同构造背景的物质供应。

4.2 砂岩的重矿物组合

在桑单林剖面的地层中,重矿物主要为锆石和 金红石(图 2),另外还有少量的磷灰石、电气石、锐 钛矿等等。ZTR 指数是衡量重矿物成熟度的重要 指标,指数越大则成熟度越高。桑单林组和者雅组 砂岩的 ZTR 指数均大于 80,具有很高的成熟度。 锆石在地表的各种地质作用中,都表现出极好的稳 定性,在桑单林组和者雅组岩石中,锆石在重矿物中 的比例为 62.4%~92.8%,这反映了砂岩再旋回沉 积的性质。金红石在地层中的含量出现了明显的变 化,在下部桑单林组砂岩的重矿物中,金红石的比例 为 14.8%~25.9%,而在上部者雅组中则小于 7%。 沉积岩中的金红石多来源于中高级变质岩和再旋回

Table 1 Framework grain mode of sandstones in Sangdamlin section, Southern Tibet											
地层	样品编号	岩石名称	单晶石英	多晶石英	钾长石	斜长石	沉积岩屑	火成岩屑	白云母	重矿物	总计
	06SDL43-2	长石岩屑砂岩	165	34	12	29	19	44	5	4	312
	06SDL43-1	长石岩屑砂岩	182	43	15	21	18	33	4	5	321
	06SDL38-1	长石岩屑砂岩	155	50	13	51	13	40	4	2	328
	06SDL37-1	长石岩屑砂岩	194	31	13	44	6	53	4	3	348
	06SDL36-3	长石岩屑砂岩	187	38	12	27	8	43	5	5	325
	06SDL36-2	长石岩屑砂岩	206	28	6	49	16	46	3	3	357
者	06SDL36-1	长石岩屑砂岩	175	42	8	33	7	53	5	4	327
	06SDL34-1	长石岩屑砂岩	154	26	16	25	13	72	3	1	310
	06SDL31-1	长石岩屑砂岩	167	27	28	43	7	54	8	2	336
	06SDL29-1	长石岩屑砂岩	169	37	21	39	13	43	4	2	328
	06SDL27-1	长石岩屑砂岩	194	40	12	31	6	63	0	2	348
	05SDL27-1	长石岩屑砂岩	230	20	47	35	23	29	5	5	394
雅	06SDL26-1	长石岩屑砂岩	171	29	14	31	18	70	2	3	338
	05SDL26-1	长石岩屑砂岩	234	35	39	46	27	31	2	2	416
	06SDL24-1	长石岩屑砂岩	180	32	14	44	12	44	3	2	331
	06SDL22-1	长石岩屑砂岩	193	27	36	45	8	66	7	3	385
	06SDL17-1	石英砂岩	315	17	5	0	0	0	0	3	340
	05SDL17-1	石英砂岩	305	14	0	0	0	0	2	3	324
组	06SDL16-4	长石岩屑砂岩	174	33	26	47	11	58	4	1	354
	06SDL16-1	石英砂岩	305	38	0	0	21	5	0	3	372
	06SDL15-1	长石岩屑砂岩	157	48	31	45	13	61	4	4	363
	05SDL15-1	长石岩屑砂岩	178	29	38	36	24	48	6	2	361
	05SDL14-2	长石岩屑砂岩	180	17	37	42	21	31	4	1	333
	06SDL14-1	长石岩屑砂岩	218	36	35	41	15	67	2	2	416
	05SDL14-1	长石岩屑砂岩	204	14	32	38	16	42	3	2	351
	06SDL10-2	石英砂岩	318	11	9	0	0	0	0	2	340
	06SDL10-1	石英砂岩	349	12	0	0	3	0	0	2	366
桑	05SDL09-1	石英砂岩	285	17	9	8	6	2	0	0	327
单	06SDL08-2	石英砂岩	330	14	0	4	0	0	8	4	360
林	05SDL08-2	石英砂岩	303	16	6	2	0	0	0	3	330
组	06SDL08-1	石英砂岩	343	15	3	2	0	0	0	9	372
	05SDL08-1	石英砂岩	303	18	3	0	6	0	4	2	336
	05SDL07-1	石英砂岩	275	10	7	0	1	0	3	2	298
	06SDL03-1	石英砂岩	324	16	0	2	0	0	8	1	351

表 1 桑单林剖面砂岩的碎屑颗粒组分(颗) Table 1 Framework grain mode of sandstones in Sangdamlin section, Southern Tibel

表 2 桑单林剖面砂岩的重矿物组成(%)

Table 2 Contents of heavy minerals of sandstones in Sangdanlin section (%)

地层	桑单林组			者 雅 组											
22日49日	06SDL														
作时细亏	03-1	08-1	10-1	14-1	15-1	16-4	23-1	24-1	26-1	27-1	27-3	31-1	36-1	38-1	43-2
锆石	81.2	62.4	74.1	86.8	84.3	78.0	77.3	89.1	91.4	88.5	89.5	92.8	88.3	90.8	87.0
金红石	14.8	25.9	16.9	3.1	3.9	4.5	2.4	2.8	4.4	6.8	4.5	1.7	6.0	5.0	2.7
白钛矿	0.6	3.1	2.9	5.2	8.8	5.7	3.5	2.4	1.5	1.7	2.2	1.0	1.3	1.0	0.3
磁铁矿	0	0	0	0	0	2.8	6.8	0.3	0.2	0	0	2.1	0	0	0
铬尖晶石	0	0	0	1.6	0.3	0.9	0.2	0.6	0.2	0	0.2	0.4	0.3	0.2	0.2
磷灰石	0.4	0.3	0.3	1.0	0.9	4.7	8.3	2.2	0.8	0.7	0.4	0.3	0.3	1.4	0.3
绿帘石	1.5	7.0	4.3	0.5	0.3	0	0	0	0	0	0.2	0.0	2.7	0.0	7.4
石榴石	0.3	0	0.1	0.5	0.3	0.9	0.2	0.6	0.2	0.4	0.2	0.4	0.3	0.2	0.2
电气石	0.3	0.1	0.1	0.5	0.3	0.9	0.2	0.6	0.2	0.4	0.2	0.4	0.3	0.2	0.2
角闪石	0.3	0	0.1	0	0.3	0.9	0.2	0.6	0.2	0.4	0	0	0	0.2	0
独居石	0	0	0	0	0	0	0	0	0	0	0.4	0	0	0	0
榍石	0.2	0.3	0.3	0.3	0	0.3	0.2	0.4	0.4	0.3	0.4	0.3	0.3	0.5	0.3
锐钛矿	0.2	0.3	0.3	0.3	0.4	0.3	0.2	0.4	0.4	0.3	0.4	0.3	0.3	0.5	1.3
板钛矿	0.2	0	0	0	0	0	0.2	0	0	0	0.4	0	0	0	0
菱铁矿	0	0.3	0.3	0	0	0.3	0	0	0	0.3	0.4	0.3	0	0	0
ZTR	96.3	88.4	91.1	90.5	88.5	83.4	80.0	92.5	96.0	95.7	94.2	94.9	94.7	96.0	89.9

的沉积岩(Force, 1980, 1991),桑单林组应形成于 印度被动大陆边缘,其物质来源可能主要为印度大 陆基底的变质岩,所以金红石含量较高,而者雅组的 金红石含量降低,则可能是岩石物源区变化的结果。

(Detritus+Polycrystalline Quartz)

值得注意的是,桑单林组和者雅组物源区的变化,还表现在一些特征矿物上。在者雅组各砂岩层中发现了铬尖晶石,且在下部 16 层的岩石中,首次出现了磁铁矿,而这两种矿物在桑单林组中均没有出现。铬尖晶石主要产于超基性岩中(Press, 1986; Cookenboo et al., 1997),而磁铁矿是火成岩中常见的一种副矿物。这两种矿物在者雅组中的发现,进一步说明这一时期沉积盆地中火山物质的输入。

4.3 砂岩的地球化学特征

砂岩的地球化学组成是岩石矿物组成的元素反映。研究表明,部分的微量元素(如 Zr,Sc,Nb 等) 在风化、搬运和沉积成岩过程中,都保持极度难溶的 状态,因此,它们在沉积岩中的含量与源区岩石基本 相同(Bhatia et al., 1986; Cullers et al. 1988; Mclennan et al., 1993)。同时,一些主量元素的比 率在砂岩的形成过程中也基本上保持恒定(Bhatia, 1983,1985; Roser et al., 1988)。基于这些,可以 根据砂岩的全岩地球化学组成来判别砂岩形成的构 造背景和物源区的变化。

4.3.1 主量元素

桑单林组 3 个样品的 SiO₂ 含量均很高,平均约 90%,这反映了砂岩碎屑颗粒以石英为主,成分成熟 度高的特征,而者雅组砂岩样品的 SiO₂ 含量则相对 较低,均小于 83%,平均为 78%,这与砂岩中不稳定 组分含量的增加一致。Mclennan 等(1990)认为,在

图 4 桑单林剖面主量元素图解(据 Roser et al., 1986; Mclennan, 1990) Fig. 4 Major elements analysis of sandstones in Sangdanlin section(After Roser et al., 1986; Mclennan, 1990)

活动的火山背景下形成的砂岩的 K₂O/Na₂O 比值 小于 1,而形成于被动大陆边缘背景下的砂岩 K₂O/ Na₂O 比值大于 1。从分析数据中可以看出(表 3), 桑单林组砂岩的 K₂O/Na₂O 比值相对于者雅组明 显偏高,前者的平均值为 1.5,而后者均小于 0.6。 在 K₂O/Na₂O-SiO₂构造背景判别图(Roser et al., 1986; Mclennan et al., 1990)上(图 4B),桑单林组 砂岩位于被动大陆边缘,者雅组砂岩主要投点于活 动大陆边缘。Hayashi(1997)等提出,沉积岩的 Al₂ O₃/TiO₂比值与源区岩石相似,可以作为很好的物 源指示剂(图 4A),桑单林组的 Al₂O₃/TiO₂比值为 10.2~12.3,而者雅组则高达 23~29,因此可以看 出,桑单林组和者雅组砂岩的物源区发生了明显的 变化。此外,者雅组砂岩中 Fe、Mg等元素也相对富 集,这可能指示了铁镁质岩石作为物源的加入。

砂岩的化学风化指数(CIA)(Nesbitt et al, 1982)是反映砂岩风化历史的重要参数,它可以用来 评估砂岩物源的风化强度。CIA=100×Al₂O₃/ (Al₂O₃+CaO*+Na₂O+K₂O),其中CaO*指硅酸 岩中的钙含量,由于本文所用的样品钙质胶结和交 代作用很弱,且全岩的CaO含量相对较低,我们用 全岩的CaO含量代替CaO*进行计算。计算结果 表明,桑单林组砂岩的CIA指数(77.6~83.4)较者 雅组(67.5~72.4)更高,这说明桑单林组砂岩的物 源遭受了更为强烈的风化历史。在Al₂O₃-CaO*+ Na₂O-K₂O 三角图上(图5),箭头的方向表示同一 种岩石在风化过程中的变化趋势(Nesbitt et al., 1982),可以看出,桑单林组和者雅组砂岩的风化指 数并不存在线性演化的关系,这反映二者的物源区 存在差异。

4.3.2 微量元素

由于一些特征的微量元素(Zr,La,Sc等)和稀 土元素在风化作用过程中性质稳定,难溶或在海水 中的停留时间短,因此,利用这些元素进行构造背景 的识别,具有相当的可靠性(Bhatia et al., 1986; Cullers et al. 1988; Mclennan et al., 1993)。就微 量元素的总量来看,下部桑单林组砂岩略低于者雅 组,前者为 500 ppm~750ppm,后者为 710ppm~ 1060 ppm。Zr元素是砂岩微量元素的重要组成部 分,主要富集于砂岩中的锆石之中,因此,Zr元素所

表 3 桑单林剖面砂岩的元素组成

Table 3 Contents of major and trace elements of sandstones in Sangdanlin section

地层		桑单林组		者雅组							
样品编号	05SDL07-1	05SDL08-2	05SDL09-1	05SDL14-1	05SDL14-2	05SDL15-1	05SDL26-1	05SDL27-1			
岩石名称	石英砂岩	石英砂岩	石英砂岩	长石岩屑砂岩	长石岩屑砂岩	长石岩屑砂岩	长石岩屑砂岩	长石岩屑砂岩			
SiO_2	91.43	90.36	87.43	77.11	82.90	76.37	76.36	77.34			
TiO ₂	0.35	0.39	0.31	0.40	0.28		0.39	0.47			
$\mathrm{Al}_2\mathrm{O}_3$	3.62	4.36	3.79	10.20	8.00	10.93	11.08	10.83			
$\mathrm{Fe}_2\mathrm{O}_3$	2.42	1.57	4.86	3.44	2.55	3.26	3.13	3.42			
MnO	0.11	0.02	0.09	0.16	0.09	0.14	0.04	0.06			
MgO	0.25	0.39	0.84	1.36	0.85	1.30	0.94	0.96			
CaO	0.14	0.16	0.25	1.39	0.58	0.82	0.97	0.65			
Na ₂ O	0.26	0.31	0.46	2.44	1.54	2.59	2.99	3.10			
K_2O	0.33	0.79	0.28	0.85	0.94	1.12	1.38	1.20			
P_2O_5	0.06	0.06	0.08	0.08	0.06	0.07	0.08	0.09			
LOI	1.12	1.17	1.39	2.77	1.78	2.40	2.23	1.72			
Li	5.31	7.74	12.27	24.68	18.84	28.14	20.87	18.93			
Be	0.72	0.54	0.53	0.70	0.60	1.10	0.95	0.86			
Sc	1.38	2.75	3.05	4.79	4.30	5.20	6.35	6.51			
V	31.26	26.71	34.09	75.00	83.14	62.38	55.13	73.81			
Cr	11.34	13.16	11.22	25.48	18.14	28.63	23.25	45.20			
Co	7.28	2.09	9.80	12.26	16.82	11.33	8.93	10.34			
Ni	10.06	12.09	43.67	83.84	30.81	22.31	30.09	36.77			
Cu	2.54	4.73	23.01	12.14	51.15	11.34	7.57	8.96			
Zn	18.29	34.26	56.99	39.02	46.70	55.63	35.13	37.05			
Ga	4.75	5.68	6.06	10.58	8.29	11.49	11.56	11.13			
Rb	14.52	30.87	11.65	34.28	34.47	40.12	62.05	47.39			
Sr	20.46	21.37	21.46	111.10	59.97	106.06	106.43	114.49			
Y	8.32	13.93	6.48	12.65	5.70	17.54	16.16	17.90			
Zr	199.61	188.10	106.71	223.24	121.33	240.98	168.08	218.08			
Nb	8.15	8.83	5.30	5.56	3.73	6.22	5.79	6.57			
Mo	6.09	4.06	2.63	104.78	12.76	5.59	12.84	32.83			
Sn	1.26	1.19	0.69	1.21	1.40	1.98	2.54	2.29			
Cs	0.82	4.66	1.67	2.51	1.63	2.93	2.61	2.12			
Ba	20.93	182.31	124.98	156.25	136.66	152.65	217.23	198.74			
Hf	9.80	12.83	3.03	6.62	3.47	7.24	4.92	6.37			
Ta	0.80	0.85	0.45	0.60	0.45	0.68	0.65	0.72			
W	1.18	1.55	0.96	1.30	2.12	1.33	1.42	1.58			
Pb	18.42	19.45	19.81	21.19	3.51	17.27	15.53	14.98			
Bi	0.05	0.07	0.15	0.17	0.14	0.14	0.13	0.11			
Th	11.78	16.13	6.79	8.09	5.51	8.85	8.55	9.96			
U	1.67	1.70	0.38	2.12	1.26	1.51	1.46	1.68			
La	18.72	29.50	9.46	16.81	10.42	19.61	18.06	23.71			
Ce	38.75	56.97	24.23	35.24	15.80	39.01	34.03	42.48			
Pr	3.85	6.49	2.46	3.82	1.77	4.20	4.15	5.04			
Nd	14.72	25.37	9.98	14.66	7.07	16.07	18.16	20.63			
Sm	2.31	4.86	2.01	3.00	1.38	3.47	3.93	4.24			
Eu	0.41	0.72	0.59	0.67	0.30	0.86	0.89	1.18			
Gd TL	2. ZZ	3.80	1.59	2.50	1. 24	3.20	3.12	3.95			
10 D	U. 20 1 25	0.00	0.20	0.34	0.10	0.01	0.01	0.00			
Dy	1.35	3.08	1.41	1.94	0.91	2.89	2.72	3.20			
но Г.	0.21		0.22	0.30	0.15	0.07	0.00	U. 48			
Er T	0.07	1. 33	0.01	1.04	0.39		1. 44	1.30			
	0.11		0.08	1 20	0.00	0.21	0.20	0.24			
ID T	0.72	1. 39	0.43	1.30	0.37	1.50	1.54	1.32			
LU	0.12	0.22	0.07	0.19	0.06	0.23	0.24	0.20			

A-Oceanic Island Arc; B-Continental Island Arc; C-Andean-type Continental Margin; D-Passive Continental Margin

占比重的大小反映了砂岩成分成熟度的高低。桑单林组和者雅组砂岩微量元素中 Zr 的平均含量均大于 25%,但前者的含量相对更高。桑单林组砂岩的 Zr/Sc 比值也相对者雅组要高。在 La-Th-Sc 和 Th-Sc-Zr/10 构造判别图(Bhatia et al., 1986)上(图 6),桑单林组投点于被动大陆边缘,而者雅组位于大陆岛弧,这反映桑单林组形成于稳定的构造背景之下,而者雅组中有明显的岛弧火山物质输入。

在 REE 配分曲线图上(图 7),样品 05SDL09-1 和 05SDL14-2 与同组的其它样品相差较大,这可能 是成岩作用强烈或者分析系统误差较大的结果,因 此在分析的时候予以排除。从桑单林组砂岩的 REE 配分曲线可以看出,砂岩的轻稀土富集, LREE/HREE 比值为 11. 2~14. 1,具较强的负销异 常,Eu/Eu^{*} = 0. 49~0. 53,La_n/Yb_n = 14. 9~18. 2。 在者雅组砂岩中,轻稀土轻度富集,LREE/HREE 比值为 7. 8~9. 3,具轻度的负销异常,Eu/Eu^{*} = 0. 72~0. 86,La_n/Yb_n = 8. 2~12. 6。综合这些特 征,我们可以发现,桑单林组和者雅组砂岩的稀土元 素特征具有明显的差异。

5 讨论

5.1 砂岩的物源区变化

桑单林组石英砂岩的成分成熟度和结构成熟度 均较高,在 QmFLt、主量元素和微量元素构造判别图 上,桑单林组投点于"克拉通内部"或"被动大陆边

图 7 桑单林剖面砂岩稀土元素配分曲线

Fig. 7 The REE patterns of sandstone in Sangdanlin section

A—者雅组砂岩 REE 配分曲线; B—桑单林组砂岩 REE 配分曲线. 稀土元素标准化值据文献 Anders et al., 1989

A-The REE patterns of Zheya formation sandstones; B-The REE patterns of Sangdanlin formation sandstones.

The normalized values of REE are from Anders et al. , 1989

缘",这说明桑单林组形成于一个相对稳定的构造背 景之下。事实上,在特提斯洋关闭之前,印度大陆北 缘一直表现为稳定被动大陆边缘的性质,而桑单林组 正是形成于这种背景之下。岩石学分析表明,桑单林 组砂岩中火成岩物质缺乏,而金红石含量偏高,这说 明桑单林组的物源区主要为印度大陆基底的变质岩。

者雅组砂岩以长石岩屑砂岩为主,在QmFLt、 主量元素、微量元素构造判别图上,分别位于"再旋 回造山带及混合区"、"活动大陆边缘"和"大陆岛弧" 位置,说明者雅组形成于一个活动的构造背景之下。 者雅组砂岩中出现了火山岩屑、斜长石、铬尖晶石以 及磁铁矿等大量指示火山来源的物质,表明在这一 时期,火成岩作为重要物源区的加入。缝合带的南 侧为稳定的印度被动大陆边缘,极少有火山作用发 生,因此我们认为,这些火山物质来自北部的雅鲁藏 布江缝合带、冈底斯岛弧或者洋内岛弧。Ding 等 (2005)曾对地层中的铬尖晶石进行过地球化学分 析,发现它们均具有高铬[Cr/(Cr+Al)>0.4]低钛 (TiO₂wt. %<0.1)的特征,与蛇绿岩套中铬尖晶石 的化学成分极为相似,认为它们来自北部的雅鲁藏 布江缝合带,这与我们的观点一致。

相比较可以发现,桑单林组和者雅组砂岩的构造背景和物源区存在明显的差异,虽然古新世的地层缺失,但是在者雅组底部石英砂岩和长石岩屑砂岩同时出现,表明物源区变化的时间为古新世末期-早始新世。

5.2 物源区变化的原因

沉积盆地中的沉积记录可以反映区域上的构造 运动(Najman, 2006),因此,桑单林组和者雅组之 间物源区的变化,反映了区域内的一次构造事件。 我们认为,这一事件的构造背景有两种可能的解释: 一是印度大陆与亚洲大陆的碰撞;二是印度大陆与 洋内岛弧的碰撞。

在特提斯洋的演化过程中,古新世末期一始新 始早期发生了大量的构造事件,如:古地磁的分析表 明(e.g. Besse et al., 1984; Klootwijk et al., 1992; Patzelt et al., 1996),在约 50Ma 印度板块与 亚洲板块之间的相对运动速率从约 15~25 cm/年 迅速减小到 13~18 cm/年;亚洲板块南部边界增生 楔在 60~50 Ma 沿巴基斯坦北缘逆冲到印度大陆 被动大陆边缘之上(Beck et al., 1995);(3)遮普惹 山连续的海相地层在古新世时期发生了沉积相和沉 积模式的剧烈变化(Willems et al., 1996)等等。这 些地质事件常被认为是印度大陆与亚洲大陆碰撞的 结果(Patriat et al., 1984; Beck et al., 1995; Willems et al., 1996)。如果印度大陆与亚洲大陆 的碰撞导致了这些事件的发生,那么,桑单林组和者 雅组之间物源区的变化可能正是这一碰撞事件的沉 积记录。物源区的变化可以解释为随着碰撞作用的 发生,亚洲板块南缘的蛇绿岩增生楔逆冲到印度被 动大陆边缘之上,盆地北部的洋壳物质和冈底斯岛 弧火山岩碎屑向南搬运沉积,形成者雅组长石岩屑 砂岩。同时,物源区变化的时间约束了碰撞时间的 下限(即最小时间),即印度一亚洲大陆的碰撞时间 在早始新始之前。

但是, Aitchison 等 (Aitchison et al., 2000, 2007)最近的研究成果认为,印度大陆与亚洲大陆的 碰撞 时间 可能为始新始—渐新世界线 附近 (~34Ma),而广泛认可的~55Ma 的碰撞事件可能是印度板块与洋内岛弧的碰撞。因此,者雅组中的火山 物质可能来源与洋内岛弧,而物源区变化的时间约 束了这一弧陆碰撞的时间。由于两种碰撞模式都能够解释物源区的变化和者雅组中火山物质的输入,因此要准确识别者雅组形成的构造背景,还需要更 深入的研究。

6 结论

(1)西藏南部桑单林地区出露的晚白垩世一始 新世砂岩包括两种岩相:下部为桑单林组石英砂岩 相,碎屑颗粒几乎全为单晶石英,磨圆度和分选性 好,杂基含量少;上部者雅组砂岩杂基含量增加,为 长石岩屑砂岩相,长石主要为基性斜长石,岩屑主要 为中基性火成岩岩屑,反映了火山物质的明显输入。

(2)砂岩的全岩地球化学组成显示,桑单林组石 英砂岩形成的构造背景为被动大陆边缘,其物源区 为印度克拉通基底的变质岩;而者雅组长石岩屑砂 岩的构造背景为再旋回造山带和大陆岛弧,其物源 区包含了北部的雅鲁藏布江缝合带、冈底斯岛弧或 洋内岛弧。

(3)桑单林组和者雅组砂岩岩相的巨大变化,反 映了古新世末期一始新始早期的一次碰撞事件,这 一事件为印度大陆与亚洲大陆的碰撞或者印度大陆 与洋内岛弧的碰撞。要准确识别者雅组长石岩屑砂 岩形成的构造背景,还需要进一步的研究。

致谢:向参加 2005 年野外工作的李亚林、王进 军、陈蕾和参加 2006 年野外工作的孙涛、韩洪斗同 志以及对本文初稿提出宝贵意见的王成善老师表示 感谢!

参考文献

- 丁林.2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物 群的发现及其对前陆盆地演化的制约. 中国科学(D辑),33 (1):47~58.
- 高剑峰,陆建军,赖鸣远. 2003. 岩石样品中微量元素的高分辨率 等离子质谱分析. 南京大学学报,36(6):844~850.
- 李红生.2000. 藏南古近纪放射虫岩的发现——个迟到的发现报告,见:第三界全国地层学会议论文集,地质出版社,354 ~ 358.
- 李亚林,王成善,胡修棉,Bak M,王进军,陈蕾,李祥辉.2007.西 藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约 束.科学通报,待刊.
- 潘桂棠,丁俊,王立全,等. 2004. 青藏高原及邻区地质图(附说明书). 成都地图出版社.
- 盛金章.1976.珠穆朗玛峰地区基隆群的放射虫动物群,见:珠穆 朗玛峰地区科学考察报告(1966~1968),古生物分册,科学出 版社,125~136.
- 万晓樵,赵文金,李国彪. 2000. 对西藏岗巴上白垩统的新认识. 现 代地质,14:281~285.
- 王成善,刘志飞,李祥辉,万晓樵. 1999. 日喀则弧前盆地和雅鲁藏 布江缝合带. 北京地质出版社.
- 王成善,李祥辉,胡修棉. 2003. 再论印度一亚欧大陆碰撞的启动 时间. 地质学报,77(1):16~23.
- 尹集祥,王义刚,张明亮,等(中国科学院西藏科学考察队).1974. 珠穆朗玛峰地区的地层,见:珠穆朗玛峰地区科学考察报告 (1966~1968),科学出版社,1~232.
- 尹集祥,孙晓兴,闻传芬,等.1988.西藏南部吉隆县党拉至萨嘎县 (加加)地段中生代地层,见:中国科学院地质所集刊,科学出 版社,(3):80~95.
- Achache J, Courtillot V, Zhou Y. 1984. Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time: Newpaleomagnetic data and synthesis. Journal of Geophysical Research, 89: 10 311~10399.
- Aitchison J C, Ba D Z, Davis A M, Liu J B, Luo H, Malpas J G, McDermid I R C, Wu H Y, Ziabrev S V, Zhou M F. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183: 231~244.
- Aitchison J C, Ali J R, Davis A M. 2007. When and where did India and Asia collide? Journal of Geophysical Research, 112, printing.
- Anders E, Grevesse N. 1989. Abundance of the elements: meteoric and solar. Geochimica et Cosmochimica, 53: 197~214.
- Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91: 611~627.
- Bhatia M R. 1985. Composition and classification of Paleozoic flysch mudrock of eastern Australia: implications in provenance and tectonic setting interpretation. Sedimentary Geology, 41: 249 ~268.
- Bhatia M R, Crook K A. 1986. Trace element characteristics of greywacks and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy Petrology, 92: 181~193.
- Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrance R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and

Asia. Nature, 373: 55~58.

- Besse J, Courtillou V, Possi J P. 1984. Paleomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621~626.
- Cookenboo H O, Bustin R M, Wilks K R. 1997. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: implications for orogeny in the Canadian Cordilera. Journal of Sedimentary Research, 67: 116~123.
- Cullers R L, Basu A, Suttner L J. 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70: 335~348.
- Debon F, Fort P L, Sheppard S M, Sonet J. 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. Journal of Pertrology, 27: 219~250.
- Dikinson W R. 1985. Interpreting provenance relations from detritsl modes of sandstones. In: Zuffa G ed. Provenance of Arenites. Dordrecht, Reidel Publishing Company.
- Ding L, Kapp P, Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: 1~18.
- Force E R. 1980. The provenance of rutile. J. Sediment. Petrology, 50: 485~488.
- Force E R. 1991. Geology of titanium-mineral deposits. Geological Society of America Special Paper. vol. 259. Boulder, 112.
- Gaetani M, Garzanti, E. 1991. Multicycle history of the northern India continental margin (northwestern Himalaya). The American Association of Petroleum Geologists Bulletin, 75: 1427~1446.
- Hayashi K, Fujisawa H, Holland H D, Ohmoto H. 1997. Geochemistry of ~1.9Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4114~4137
- Hodges K V, Parrish R R, Searle M P. 1996. Tectinic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15: 1264~1291.
- Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112 (3): 324~350.
- Jadoul F, Berra F, Garzanti E. 1998. The Tethys Himalayan passive margin from late Triassic to Early Cretaceous (south Tibet). Journal of Asia Earth Sciences, 16: 173~194.
- Klootwijk C T, Gee J S, Peirce J W, Smith G M, MaFadden P L. 1992. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20: 395 ~ 398.
- Mclennan S M, Taylor S R, McCulloch M T, Maynard J B. 1990. Geochemical and Nd-Sr isotope composition of deep sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54: 2015~2050.
- Mclennan S M, Hemming S R, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M J and Base A eds. Processes controlling the compostion of clastic sediments. Geological Society of America, Special Paper, 284: 21~44.
- Miller C, Schuster R, Klotzli U, Frank W, Grasemann B. 2000. Late Cretaceous-Tertiary magmatic and tectonic events in the

transhimalaya batholith (Kailas area, SW Tibet). Bulletin Suisse de Mineralogie et Petrographie, 80; 1~20.

- Najman Y. 2006. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Science Reviews, 74: 1~72.
- Nesbitt H W, Young G W. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715~717.
- Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615~621.
- Patzelt A, Huamei Li, Junda Wang, Appel E. 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259: 259~284.
- Pecher A. 1989. The metamorphism in central Himalaya. Journal of Metamorphic Geology, 7: 31~41.
- Press S. 1986. Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish Massif. Geologische Rundschau, 75: 333~340.
- Ratschbacher L, Frisch W, Liu G G. 1993. Distributed deformation in southern and western Tibet during and after India-Eurasia collision. Journal of Geophysical Research, 99: 19917~19945.
- Roser B P, Korsch R J. 1986. determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/ Na₂O ratio. Journal of geology, 94: 635~650.

- Roser B P, Korsch R J. 1988. Provenance signatures of sandstonemudstone suits determined using discrimination function analysis of major element data. Chemical Geology, 67: 119~ 139.
- Rowley D. B. 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth and Planetary Science Letters, 145:1~13.
- Searle M P, Corfield R I, Stephenson B, McCarron J. 1997. Structure of the north India continental margin in the LadaKh-Zanskar Himalayas: implications for the timing of obduction of the Spontang ophiolite, India-Asia collision and deformation events in the Himalaya. Geological Magazine, 134: 297~316.
- Tewari V C. 1993. Precambrian and Lower Cambrian stromatolites of the lesser Himalaya. Geophytology, 23: 19~39.
- Willems H. 1993. Sedimentary history of the Tethys Himalaya continental margin in the South Tibet (Gamba, Tingri) during Upper Cretaceous and Paleogene (Xizang Autonomous Region, P. R. China). In: Willems H, ed. Geoscientific Investigations in the Tethyan Himalayas. Berichte aus dem Fachbereich Geowissenschaften, der Universit t Bremen, 38: 49~181.
- Willems H, Zhou Z, Zhang B, Graefe K U. 1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geologische Rundschau, 85: 723~754.
- Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planet Sciences, 28: 211~280.

Provenance Analysis of Late Cretaceous-Early Eocene Sandstones in Sangdanlin Area, Southern Tibet

WANG Jiangang, HU Xiumian, HUANG Zhicheng Department of Earth Sciences, Nanjing University, 210093

Abstract

The Yarlung-Tsangpo suture zone in Tibet marks the tectonic boundary between Eurasia and India, the sedimentary rocks in which can provide valuable records of the evolution of Neo-Tethys ocean. During our field work in the summer of 2005 and 2006, we observed Sangdanlin section in Gyirong, southern Tibet, which lies in sedimentary melange of Yarlung-Tsangpo suture zone. Sangdanlin section consists of lower Sangdanlin formation (Late Cretaceous) and upper Zheya formation (early Eocene). The stratigraphy and provenance of this section are studied in this paper. Sangdanlin formation mainly consists of quartz sandstone, silty shale and siliceous rocks, sandstones in which mostly contain monocrystalline quartz grains with good gradation and psephicity and volcanic lithoclast is absent. In contrast, Zheya formation makes up of sandstone, siliceous shale, clay shale and siliceous rocks. Sandstones are feldspathic litharenite, in which the appearance of chromian spinel and volcanic lithoclast indicates that ophiolite and volcanic arc influence are present. Heavy mineral assemblages and major, minor, rare earth element concentrations in sandstones in Zheya formation were mainly derived from ophiolite and volcanic arc north of the sedimentary basin. We suggest that the provenance change recorded a collision event in Tethys ocean, which is either India-Eurasia collision or India-oceanic arc collision.

Key words: Southern Tibet; Eocene; Sandstone; Provenance analysis; Collision event