首页 | 官方网站   微博 | 高级检索  
     

CWRF模式极端降水模拟误差订正
引用本文:董晓云,余锦华,梁信忠,王琛.CWRF模式极端降水模拟误差订正[J].应用气象学报,2020,31(4):504-512.
作者姓名:董晓云  余锦华  梁信忠  王琛
作者单位:1.南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心, 南京 210044
摘    要:基于1980—2015年6—8月CWRF模式(Climate-Weather Research and Forecasting model)14种方案的模拟结果和全国逐日降水观测资料,对比了Q-lin,Q-tri,RQ-lin,RQ-tri,SSP-lin和CDFt 6种误差订正方法对CWRF模式控制化方案(C1)模拟中国东部夏季日极端降水的订正效果,以CWRF模式14种方案日极端降水的模拟效果排名为基础,对比了模拟效果较好的4种方案集合、模拟较差的4种方案集合以及14种方案集合的订正效果,选出相对较好的订正方案进一步评估其成员集合后订正和成员分别订正后再集合的订正效果,结果表明:采用6种误差订正方法均可明显减少日极端降水模拟误差,其中RQ-lin方法订正效果最佳。CWRF模式对中国东部的极端降水指数均表现出较好的模拟能力,不同参数化集合方案得到14种方案成员先订正再集合与观测日极端降水平均值最为接近,研究结果对于改进模拟结果、提高其预测能力有重要应用价值。

关 键 词:CWRF    极端降水    模拟评估    误差订正
收稿时间:2020-02-05

Bias Correction of Summer Extreme Precipitation Simulated by CWRF Model
Affiliation:1.Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 2100442.Hebei Meteorological Observatory, Shijiazhuang 0500213.Earth System Science Interdisciplinary Center Department of Atmospheric and Oceanic Science, University of Maryland, MD 207424.Xuchang Meteorological Service of Henan Province, Xuchang 461000
Abstract:The accurate forecast of extreme precipitation plays an important role in guiding the national economy and people's livelihood. The newly developed Climate-Weather Research and Forecasting model (CWRF) integrates a comprehensive ensemble of alterable parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation. This facilitates the use of an optimized physics ensemble approach to improve weather and climate prediction. Evaluating the simulation performance and correcting the error can effectively improve the operational prediction level of extreme precipitation in CWRF model.Daily rainfall data simulated by CWRF model and observed at 2416 meteorological stations in China from June to August during 1980-2015 are used to compare correcting effects of Q-lin, Q-tri, RQ-lin, RQ-tri, SSP-lin and CDFt on extreme precipitation of control scheme simulated by CWRF in eastern China. Based on the simulation performance ranking of 14 parameterization schemes in CWRF model, effects of the top 4, the latter 4 and the ensemble of 14 parameterization schemes are compared. Correcting effects of two approaches are compared: Revising after the collection of members and revising before the collection of members. Main results show that the error of the extreme precipitation simulation of C1 scheme can be obviously reduced by using six error correction methods, among which the RQ-lin correction method is the best. Although there are great differences between parameterization schemes in the simulation of extreme precipitation index, CWRF model shows good ability for extreme precipitation index in eastern China. The first four parametric schemes with good extreme precipitation simulation ability are C13, C14, C12 and C1, while the C6, C4, C3 and C10 schemes perform worse, respectively. Different parameterization schemes are revised to ensure that it is the closest to the average value of observed extreme precipitation after each of 14 members of the parameterization scheme being revised. Results have important application value for improving outputs of model and improving its prediction ability.Error correction can only be used as a supplementary means to improve extreme precipitation prediction. The precision of model physical process and the improvement of model resolution are the key to improve extreme precipitation prediction.
Keywords:
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号